
Satellite Communications Toolbox
Reference

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Satellite Communications Toolbox Reference
© COPYRIGHT 2021–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2021 Online only New for Version 1.0 (Release 2021a)
September 2021 Online only Revised for Version 1.1 (Release 2021b)
March 2022 Online only Revised for Version 1.2 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Functions
2

Objects
3

System Objects
4

iii

Contents

Apps

1

Satellite Link Budget Analyzer
Analyze link budgets for satellite communications

Description
The Satellite Link Budget Analyzer app enables you to analyze link budgets for satellite
communications.

Using the app, you can:

• Analyze link budgets by specifying inputs properties related to

• Location, transmitter, and receiver characteristics for satellites and ground stations
• Atmospheric conditions for links

• Design a satellite communications link to meet a minimum link margin requirement
• Have insight into intermediate link budget computations
• Calculate, compare, and visualize results across a sweep of multiple parametrized design

constraints

For more information, see “Get Started with Satellite Link Budget Analyzer App”.

1 Apps

1-2

Open the Satellite Link Budget Analyzer App
MATLAB® Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.

MATLAB Command Prompt: Enter satelliteLinkBudgetAnalyzer.

Examples

Show Default Satellite Link Budget App Configuration

This example shows the default configuration that appears when you open the Satellite Link
Budget Analyzer app. The figure shows the displayed results and plots, which analyze the default
satellite communications link.

The upper-left pane of the app shows the Link Canvas tab, which displays this default configuration:

• Link L1 is an uplink connecting ground station G1 to satellite S1
• Link L3 is a crosslink connecting satellite S3 to satellite S4
• Link L2 is a downlink connecting satellite S2 to ground station G2

 Satellite Link Budget Analyzer

1-3

The lower-left pane of the app shows the Ground Station, Link, and Satellite tabs. In these tabs,
you can adjust property settings for each entity in the configured links. To view or adjust the
properties settings of an entity, bring that entity into focus by selecting it in the Link Canvas tab.

The center pane of the app shows the computed link budget results in the Link Budget tab.

The right pane of the app window shows these plots:

• Free-space path loss for links L1, L2, and L3 in the upper-right area (FSPL tab).
• Link margins for links L1, L2, and L3 in separate tabbed plots in the lower-right area (Margin-L1,

Margin-L2, and Margin-L3 tabs, respectively).

Configuration Including P.618 Link Availability Analysis

The app supports analyzing the satellite communications link availability through the propagation
loss model defined in Recommendation ITU-R P.618-13. For details on the P.618 propagation loss
model, see Earth-Space Propagation Losses.

To include ITU-R P.618 propagation losses for availability analysis, select the Include P.618 Losses
checkbox on the Budget Analyzer tab. If the MAT-files with digital maps are not available on the
path, the following dialog box appears. Click the Download and Extract button to add the required
map files on the MATLAB path.

Alternatively, you can download and unpack the MAT-files by entering this code at the MATLAB
command prompt.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

If you have an already customized link budget inputs/outputs, including availability will restore the
link budget to its default inputs/outputs. A different dialog box opens up in this case where you can

1 Apps

1-4

https://www.mathworks.com/help/satcom/gs/p618-channel-modeling.html

choose to either cancel or consent to the inclusion of ITU-R P.618 propagation losses for availability
analysis.

This figure shows the updates to the configuration in the Link Budget (tags N6, N7, and N8) and
Link (tag PL5) tabs, after the MAT-files are added on the MATLAB path.

In this app, Total atmospheric losses (tag N7) calculation with P.618 propagation model
assumes the antenna type as parabolic.

Customize Inputs and Outputs

Customize the Properties and Results tabs in the Satellite Link Budget Analyzer app using the
Customize Input/Output tab.

Open the Satellite Link Budget Analyzer app. These figures show the default configuration on the
Budget Analyzer and Customize Input/Output tabs.

 Satellite Link Budget Analyzer

1-5

On the Customize Input/Output tab:

• Use the options in the Add New Property section to add new properties.

1 Apps

1-6

• Use the options in the Add New Result section to add new results.
• Use the buttons in the Close section to accept or cancel the changes.

To delete a property or result, select it and click Delete in the respective section.

Add Customized Properties and Results

Add customized properties and results by following these steps.

1 Add a new link property, FEC code rate. In the Add New Property section of the Customize
Input/Output tab, select Link from the Type list. In the Unit box, type -. In the Default value
box, type 0.5. Click Add Property. The Link Properties section of the Properties tab now
includes FEC code rate (tag PLC1).

2 Add another link property, Coding gain. Select Link from the Type list. In the Unit box, type
dB. In the Default value box, type 4.2. Click Add Property. The Link Properties section of the
Properties tab now includes Coding gain (tag PLC2).

3 Add a new result, Required Eb/No with FEC. In the Add New Result section of the
Customize Input/Output tab, type PL4 - PLC2 (Required Eb/No - Coding gain) in the
Formula box. In the Unit box, type dB. Click Add Result. The Results tab now includes
Required Eb/No with FEC (tag NC1).

4 The formula for Margin (tag N13) on the Results tab is changed to use NC1 instead of PL4.
5 In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Properties and Results tabs.

Delete Existing Results

Delete existing link analysis results by following these steps.

 Satellite Link Budget Analyzer

1-7

1 In the Results tab, select Rain attenuation (tag N6) and click Delete in this tab. Repeat this
process for Total atmospheric losses (tag N7) and Total propagation losses (tag N8).

2 The formula for Received isotropic power (tag N9) on the Results tab is changed to use N5
instead of N8.

3 In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Results tab.

Parameters
BUDGET ANALYZER — Link budget configuration
tab

This figure shows the BUDGET ANALYZER tab with the factory default configuration.

1 Apps

1-8

Use the Ground Station, Link, and Satellite tabs to adjust property settings for the link budget
entities shown in the Link Canvas tab.

Ground Station — Ground station location, transmitter, and receiver settings
tab

Select the Ground Station tab to set the location, transmitter, and receiver settings for the ground
station highlighted in the Link Canvas tab. For information about customizing satellite, ground
station, transmitter, receiver, and link properties, and the link budget result computations, see
CUSTOMIZE INPUT/OUTPUT.

Satellite — Satellite location, transmitter, and receiver settings
tab

Select the Satellite tab to set the location, transmitter, and receiver settings for the satellite
highlighted in the Link Canvas tab. For information about customizing satellite, ground station,
transmitter, receiver, and link properties, and the link budget result computations, see CUSTOMIZE
INPUT/OUTPUT.

Link — Link characteristics
tab

Select the Link tab to set link characteristics for the link highlighted in the Link Canvas tab. For
information about customizing satellite, ground station, transmitter, receiver, and link properties, and
the link budget result computations, see CUSTOMIZE INPUT/OUTPUT.

Customize Input/Output — Customize input properties and computations used for output
tab

To view or customize input properties and computations used for output, on the BUDGET
ANALYZER tab, click Customize Input/Output to switch to the CUSTOMIZE INPUT/OUTPUT
tab. In the CUSTOMIZE INPUT/OUTPUT tab, you can

 Satellite Link Budget Analyzer

1-9

• Change settings of the satellite, ground station, transmitter, receiver, and link properties from the
factory default inputs

• Add and delete satellite, ground station, transmitter, receiver, and link input properties
• Add, delete, and modify formulas used to compute link budget output results

CUSTOMIZE INPUT/OUTPUT — Customize link budget computations
tab

This figure show the CUSTOMIZE INPUT/OUTPUT tab with the factory default configuration.

In the CUSTOMIZE INPUT/OUTPUT tab, you can

• Use the Properties tab to change settings of the satellite, ground station, transmitter, receiver,
and link properties from the factory default inputs. You can also add and delete satellite, ground
station, transmitter, receiver, and link input properties. On the Properties tab you can use the
Restore to factory button to load the factory default property configuration in the current app
session.

• Use the Results tab to add, delete, and modify formulas used to compute link budget output
results. On the Results tab you can use the Restore to factory button to load the factory default
results configuration in the current app session.

Programmatic Use
satelliteLinkBudgetAnalyzer opens the Satellite Link Budget Analyzer app.

1 Apps

1-10

See Also
Functions
fspl

Objects
satelliteScenario

Topics
“Get Started with Satellite Link Budget Analyzer App”

Introduced in R2021a

 Satellite Link Budget Analyzer

1-11

Functions

2

bocmod
Binary offset carrier modulation

Syntax
y = bocmod(x,m,n)
y = bocmod(x,m,n,halfcyclesps)
y = bocmod(x,m,n,halfcyclesps,phasing)

Description
y = bocmod(x,m,n) performs binary offset carrier (BOC) modulation on the input bits x by using a
square wave and returns the modulated symbols y. m is the square wave frequency indicator. n is the
input bit rate indicator.

By default, the phasing of the square wave is set to the phase of the sine curve.

y = bocmod(x,m,n,halfcyclesps) specifies the number of samples per half cycle of the square
wave.

y = bocmod(x,m,n,halfcyclesps,phasing) specifies the phase of the square wave.

Examples

Apply BOC Modulation Using Default Phasing

Generate a random stream of input data bits to modulate.

numBits = 5;
bits = randi([0,1],numBits,1);

Set the values of m and n for the subcarrier square wave.

m = 2; % Square wave frequency is m*1.023e6 Hz
n = 2; % Square wave input bit rate is n*1.023e6 Hz

Modulate the input bits with the square wave using the BOC modulation technique.

sym = bocmod(bits,m,n) % Default phasing is of a sine curve

sym = 20×1

 -1
 -1
 1
 1
 -1
 -1
 1
 1
 1

2 Functions

2-2

 1
 ⋮

Apply BOC Modulation Using Cosine Curve Phasing

Generate a random stream of input data bits to modulate.

numBits = 10;
bits = randi([0,1],numBits,1);

Set the values of m and n for the subcarrier square wave. Also specify the number of samples per
square wave half cycle, spshc.

m = 5;
n = 2;
spshc = 4;

Modulate the input bits with the square wave using the BOC modulation technique.

sym = bocmod(bits,m,n,spshc,"cos");

Input Arguments
x — Input bits
column vector of binary values

Input bits, specified as a column vector of binary values.

The function maps an input bit value of 0 to +1 and an input bit value of 1 to -1. It then multiplies the
mapped symbols with a square wave by using the BOC modulation technique.
Data Types: double | int8 | logical

m — Square wave frequency indicator
positive scalar

Square wave frequency indicator, specified as a positive scalar.

The frequency of square wave is m*1.023e6 Hz.

Note The value of 2*m/n must always be an integer. This value represents the number of square
wave half cycles per input bit, x.

Data Types: double

n — Input bit rate indicator
positive scalar

Input bit rate indicator, specified as a positive scalar.

The input bit rate is n*1.023e6 Hz.

 bocmod

2-3

Data Types: double

halfcyclesps — Number of samples per half cycle of the square wave
2 (default) | integer greater than or equal to 2

Number of samples per half cycle of the square wave, specified as an integer greater than or equal to
2.
Data Types: double | uint8

phasing — Phase of square wave
"sin" (default) | "cos"

Phase of the square wave, specified as "sin" or "cos".

• "sin" — Set the phase of the square wave to the phase of a sine curve.
• "cos" — Set the phase of the square wave to the phase of a cosine curve.

Data Types: char | string

Output Arguments
y — BOC modulated symbols
column vector

BOC modulated symbols, returned as a column vector. The length of the vector is equal to
length(x)*halfcyclesps*2*m/n. If you do not specify halfcyclesps, the value of y is 2 by default.

The data type of the returned modulated symbols is same as that of the input bits, x.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gnssCACode | gpsPCode

Introduced in R2022a

2 Functions

2-4

ccsdsRSEncode
Encode CCSDS-compliant RS codes

Syntax
code = ccsdsRSEncode(msg,k)
code = ccsdsRSEncode(msg,k,i)
code = ccsdsRSEncode(msg,k,i,s)

Description
code = ccsdsRSEncode(msg,k) encodes the message in msg by using a (255, k) Reed-Solomon
(RS) encoder, as defined in Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3
Section 4 [1]. k is the message length. code is in dual basis form, as the function assumes that the
input to the CCSDS RS encoder is in dual basis form. For more details on dual basis representation,
see CCSDS 131.0-B-3 Section 4.4.2 [1].

For a description of CCSDS RS code construction, see “CCSDS RS Code Construction” on page 2-8.

code = ccsdsRSEncode(msg,k,i) specifies the interleaving depth, i. msg consists of i RS
message symbols of length k.

code = ccsdsRSEncode(msg,k,i,s) encodes the shortened input message of length s with
interleaving depth i.

Examples

Encode Message Using Full-Length CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder.

Specify the message length, k, and the interleaving depth, i.

k = 239;
i = 3;

Generate a column vector of random message symbols. The length of the message is product of
message length, k, and interleaving depth, i.

msg = randi([0 255],k*i,1);
size(msg)

ans = 1×2

 717 1

Encode the message by using CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,i);

 ccsdsRSEncode

2-5

Verify that the length of the encoded codeword is 255 times the value of the interleaving depth.

size(code)

ans = 1×2

 765 1

Encode Shortened Message Using CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder with message shortening.

Specify the message length, k, interleaving depth, i, and the shortened message length, s.

k = 223;
i = 2;
s = 146;

Generate a column vector of random message bits. The length for the shortened message bits is eight
times the product of shortened message length, s, and the interleaving depth, i.

msg = logical(randi([0 1],s*i*8,1));

Encode the shortened message by using a CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,i,s);

Verify that the length of the encoded codeword is equal to (8*i*(255 – k + s).

size(code)

ans = 1×2

 2848 1

Input Arguments
msg — Input message
column vector of logical bits | column vector of integers in the range [0, 255]

Input message, specified as a column vector of logical bits or a column vector of integers in the range
[0, 255]. The size of the column vector depends on the data type of the input message.

Input Message
Type

Size of msg
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Full-length input
message

8*k k

2 Functions

2-6

Input Message
Type

Size of msg
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Interleaved input
message

8*k*i k*i

Shortened input
message

8*s*i s*i

Data Types: double | uint8 | logical

k — Message length
223 | 239

Message length, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

msg consists of i RS message symbols of length k.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].
Data Types: double

Output Arguments
code — CCSDS RS encoded message
column vector

CCSDS RS encoded message, returned as a column vector. The data type of code is same as that of
the input message, msg. The size of the column vector depends on the data type of the input message.

Input Message
Type

Size of code
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Full length input
message

8*255 255

Interleaved input
message

8*255*i 255*i

Shortened input
message

8*i*(255 – k + s) i*(255 – k + s)

 ccsdsRSEncode

2-7

More About
CCSDS RS Code Construction

CCSDS RS codes are powerful burst error-correcting codes used as forward error-correcting (FEC)
codes.

The CCSDS RS encoder accepts full-length or shortened messages.

Construction of Full-Length Message CCSDS RS Codes

For full-length input messages the input column vector length is a product of the interleaving depth
(i) and the message length (k).

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row. n is the codeword length, which is fixed to 255 symbols
according to CCSDS 131.0-B-3 Section 4 [1].

Construction of Shortened Message CCSDS RS Codes

For shortened input messages, the input column vector length is a product of the interleaving depth
(i) and the shortened message length (s). The shortened message vector prepends padding the
beginning of the message vector with zeros. The resulting vector is an i-by-k vector.

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row.

References
[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.

CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsRSDecode

Objects
ccsdsTMWaveformGenerator | comm.RSEncoder

Introduced in R2021a

2 Functions

2-8

ccsdsRSDecode
Decode CCSDS-complaint RS codes

Syntax
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k)
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i)
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i,s)

Description
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k) decode the received signal in code by
using a (255, k) Reed-Solomon (RS) decoder with the generator polynomial, as defined in the
Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3 Section 4 [1]. k is the number of
symbols in the decoded message. The function returns the decoded message code, decoded, the
number of corrected errors, cnumerr, and the corrected version of code, ccode.

For a description of CCSDS RS code decoding, see “CCSDS RS Code Decoding” on page 2-12.

[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i) specifies the interleaving depth, i.
code consists of i RS codewords of length 255 bytes.

[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i,s) specifies the shortened message
length, s.

Examples

Encode and Decode Full-length CCSDS RS Encoded Message

Generate a full-length encoded Reed-Solomon (RS) codeword, introduce random errors, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Generate a random message of length k.

k = 223;
msg = randi([0 255],k,1);

Encode the message by using a CCSDS RS encoder.

code = ccsdsRSEncode(msg,k);

Generate 15 random error symbols and 15 unique random locations to insert these errors.

err = randi([1 255],15,1);
errLoc = randperm(255,15);
errVec = zeros(255,1);
errVec(errLoc) = err;

Introduce error symbols in the encoded message.

rxBytes = bitxor(code,errVec);

 ccsdsRSDecode

2-9

Decode the encoded symbols introduced with errors by using CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes, k);

Display the number of corrected errors.

disp(v)

 15

Decode CCSDS RS Codeword with Burst Errors

Generate an full-length encoded Reed-Solomon (RS) codeword, introduce burst of erros, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Specify the message length k and interleaving depth, i.

k = 239;
i = 5;

Generate a column vector of random message bits. Encode the shortened message by using a CCSDS
RS encoder.

msg = randi([0 255],k*i,1);
code = ccsdsRSEncode(msg,k,i);

Generate 30 random error symbols.

err = randi([1 255],30,1);
errVec = zeros(255*i,1);

Introduce burst errors from location 52 to 81.

errVec(52:81) = err;
rxBytes = bitxor(code,errVec);

Decode the encoded symbols introduced with burst errors by using a CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes,k,i);

Display the number of corrected errors.

disp(v)

 30

Input Arguments
code — Encoded message
column vector of integers in the range [0, 255]

Encoded message, specified as a column vector of integers in the range [0, 255].

The elements and the size of the column vector depends on the data type of the input message.

2 Functions

2-10

• For a logical data type, each element in the vector is either 0 or 1.
• For a uint8 or double data type, each element is an integer symbol in GF(2m), in the range [0,

255]. m is the number of bits in each symbol.

Input Message
Type

Size of code
Data Type of code Is
logical

Data Type of code Is uint8 or double

Full length input
message

8*255 255

Interleaved input
message

8*255*i 255*i

Shortened input
message

8*i*(255 – k + s) i*(255 – k + s)

Data Types: double | uint8 | logical

k — Number of symbols in decoded message
223 | 239

Number of symbols in the decoded message, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

code consists of i RS codewords of length 255 bytes.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].
Data Types: double

Output Arguments
decoded — Decoded message
column vector

Decoded message, returned as a column vector. Each element represents decoding the corresponding
element in input code. The data type of decoded is the same as that of code.

The size of the column vector depends on the data type of code.

 ccsdsRSDecode

2-11

Input Message
Type

Size of decoded
Data Type of code Is
logical

Data Type of code Is uint8 or double

Full length input
message

8*k k

Interleaved input
message

8*k*i k*i

Shortened input
message

8*s*i s*i

When the value of output cnumerr is –1, decoded is equal to the first k elements of code.

cnumerr — Number of corrected errors
integer in the range [-1, (n – k) ∕ 2]

Number of corrected errors, returned as an integer in the range [-1, (n – k) ∕ 2], where n is the
codeword length. The value of n is set to 255 according to CCSDS 131.0-B-3 Section 4 [1].

A value of –1 in cnumerr indicates the failure of the decoder to correct the errors.

ccode — Corrected version of code
column vector

Corrected version of code, returned as a column vector. The length of ccode is same as the length of
code. The data type of ccode is the same as that of code.

When the value of output cnumerr is –1, ccode is equal to code.

More About
CCSDS RS Code Decoding

CCSDS RS codes are powerful burst error-correcting codes. These are most commonly used as
forward error-correcting (FEC) codes, as they detects and correct errors on the symbol level.
Decoding Full-Length Message CCSDS RS Codes

Like encoding, decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of interleaving depth (i) and codeword length (n). n is fixed to 255 symbols according to
CCSDS 131.0-B-3 Section 4 [1]. The input vector is composed of message and parity symbols.

Decoding Shortened Message CCSDS RS Codes

Like encoding, the decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of the interleaving depth (i) and the value calculated by n-k+s. The input vector is composed
of shortened message and parity symbols.

References
[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.

CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

2 Functions

2-12

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsRSEncode

Objects
ccsdsTMWaveformGenerator | comm.RSDecoder

Introduced in R2021a

 ccsdsRSDecode

2-13

dvbs2BitRecover
Recover bits for DVB-S2 PL frames

Syntax
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR)
[BITS,NUMFRAMESLOST,PKTCRCSTATUS] = dvbs2BitRecover(RXFRAME,NVAR)
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR,EARLYTERM)

Description
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR) recovers user packets (UPs) or a
continuous data stream, BITS, and the number of lost baseband frames, NUMFRAMESLOST. Input
RXFRAME is the received complex in-phase quadrature (IQ) symbols in the form of physical layer (PL)
frames of a Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission. Input
NVAR is the noise variance estimate, used to calculate soft bits.

[BITS,NUMFRAMESLOST,PKTCRCSTATUS] = dvbs2BitRecover(RXFRAME,NVAR) also returns the
UP cyclic redundancy check (CRC) status.

[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR,EARLYTERM) uses low-density
parity-check (LDPC) decoding termination criterion, EARLYTERM, to recover data bits, BITS.

Examples

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496

2 Functions

2-14

numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
disp(FramesLost)

 0

disp(pktCRCStat)

 {20×1 logical}

Recover Data Bits from Generic Stream DVB-S2 Transmission with Early Termination
Enabled

Recover user bits in a multi-input generic stream (GS) Digital Video Broadcasting Satellite Second
Generation (DVB-S2) transmission with variable modulation and coding scheme.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');

 dvbs2BitRecover

2-15

 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

nFrames = 1;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and forward error correction (FEC) rate (MODCOD) and the data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 3;
s2WaveGen.MODCOD = [10 15 6]; % QPSK 8/9, 8PSK 5/6, and QPSK 2/3
s2WaveGen.DFL = [44500 51387 42960];

Create a bit vector of input information bits for each input stream.

data = cell(s2WaveGen.NumInputStreams,1);
for i = 1:s2WaveGen.NumInputStreams
 data{i} = randi([0 1],s2WaveGen.DFL(i)*nFrames,1);
end

Generate the DVB-S2 time-domain waveform with the input information bits. Flush the transmit filter
to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 10;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover user bits. Enable early termination of the low-density parity-codes (LDPC) decoder.

[bits,FramesLost] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10),1);

Display the number of frames lost and the number of bit errors in each stream.

fprintf('Number of frames lost = %d\n',FramesLost)

2 Functions

2-16

Number of frames lost = 0

for i = 1:s2WaveGen.NumInputStreams
 fprintf('Number of bit errors in stream %d = %d\n',i, ...
 sum(data{i}~=bits{i}))
end

Number of bit errors in stream 1 = 0
Number of bit errors in stream 2 = 0
Number of bit errors in stream 3 = 0

Recover Data Bits from Transport Stream DVB-S2 Transmission with ISSYI Enabled

Recover user packets (UPs) in a multi-input transport stream (TS) Digital Video Broadcasting Satellite
Second Generation (DVB-S2) transmission with constant coding and modulation.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a DVB-S2 System object with constant coding and modulation configuration for a multi-input
TS. Specify a short forward error correction (FEC) frame format and enable the input stream
synchronization (ISSY).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 3;
s2WaveGen.FECFrame = "short";
s2WaveGen.MODCOD = 10; % QPSK 8/9
s2WaveGen.DFL = 13920;
s2WaveGen.ISSYI = true;

Create a bit vector of information bits of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts); txRawPkts; ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

 dvbs2BitRecover

2-17

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 12;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn (txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor', sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the number of bit errors in each stream.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
fprintf('Number of frames lost = %d\n',FramesLost)

Number of frames lost = 0

for i = 1:s2WaveGen.NumInputStreams
 fprintf('Number of bit errors in stream %d = %d\n',i, ...
 numel(pktCRCStat{i})-sum(pktCRCStat{i}))
end

Number of bit errors in stream 1 = 0
Number of bit errors in stream 2 = 0
Number of bit errors in stream 3 = 0

Input Arguments
RXFRAME — Received IQ symbols from PL frames of DVB-S2 transmission
column vector

Received IQ symbols from PL frames of a DVB-S2 single-input or multi-input transmission, specified
as a column vector. RXFRAME can contain one or multiple PL frames.

The length of RXFRAME depends on the value of the properties FECFrame, MODCOD, and HasPilots
of the dvbs2WaveformGenerator System object™.
Data Types: double
Complex Number Support: Yes

2 Functions

2-18

NVAR — Noise variance estimate
nonnegative scalar

Noise variance estimate that the function adds to the input IQ symbols, specified as a nonnegative
scalar. NVAR is used as a scaling factor to calculate the soft bits from the IQ symbols.

When you specify NVAR as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.
Data Types: double

EARLYTERM — Flag for early termination of LDPC decoder
0 or false (default) | 1 or true

Flag for early termination of the LDPC decoder when all parity-checks are satisfied, specified as a set
logical 1 (true) or 0 (false). When set to 1 (true), the LDPC decoder is terminated when all parity
checks are satisfied.

When you set this value to 0 (false), the maximum decoding iteration limit is 50.
Data Types: logical

Output Arguments
BITS — Recovered data bits
cell array of column vectors

Recovered data bits, returned as a cell array of column vectors. Each element of the cell array is of
data type int8. This output can be either UPs or generic data stream, depending of the
StreamFormat property of the dvbs2WaveformGenerator System object.

For a multi-input stream transmission, each element of the cell array corresponds to an individual
input stream.
Data Types: cell

NUMFRAMESLOST — Number of lost baseband frames
nonnegative integer

Number of lost baseband frames, returned as a nonnegative integer. If the baseband header CRC
fails, the frame is considered lost.
Data Types: double

PKTCRCSTATUS — UP CRC status
cell array of column vectors

UP CRC status, returned as a cell array of column vectors. Each element of the cell array is of data
type logical. For a multi-input stream transmission, each element of the cell array corresponds to
an individual input stream.
Dependencies

PKTCRCSTATUS applies for only the input streams where the value of the UPL property of
dvbs2WaveformGenerator System object is nonzero.
Data Types: cell

 dvbs2BitRecover

2-19

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbs2WaveformGenerator

Introduced in R2021a

2 Functions

2-20

p618PropagationLosses
Calculate Earth-space propagation losses, cross-polarization discrimination, and sky noise
temperature

Syntax
[pl,xpd,tsky] = p618PropagationLosses(p618cfg)
[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value)

Description
[pl,xpd,tsky] = p618PropagationLosses(p618cfg) returns Earth-space propagation losses
pl, cross-polarization discrimination xpd, and sky noise temperature tsky, as defined in the ITU-R
P.618 recommendation [1]. p618cfg specifies the P.618 configuration parameters.

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value) specifies additional
options using one or more name-value pair arguments.

Examples

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a default P.618 configuration object.

cfg = p618Config;

 p618PropagationLosses

2-21

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.

[pl,xpd,tsky] = p618PropagationLosses(cfg)

pl = struct with fields:
 Ag: 0.2269
 Ac: 0.4552
 Ar: 6.7981
 As: 0.2633
 At: 15.6091

xpd = 32.8876

tsky = 267.4689

Calculate Earth-space Propagation Losses Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a P.618 configuration object with a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Specify the surface water vapor density as 2.8 g
m3 , the total columnar content of the cloud liquid water

as 1.4 kg
m2 , and the median value of the wet surface refractivity as 1.2. Set the earth station height as

0.5 km. Calculate the Earth-space propagation losses.

pl = p618PropagationLosses(cfg,'StationHeight',0.5,...
 'WaterVaporDensity',2.8,...

2 Functions

2-22

 'TotalColumnarContent',1.4,...
 'WetSurfaceRefractivity',1.2)

pl = struct with fields:
 Ag: 0.8649
 Ac: 1.0987
 Ar: 0.8907
 As: 0.1372
 At: 2.8590

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a P.618 configuration object that occupies a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.

pl = p618PropagationLosses(cfg,'RainRate',1,'StationHeight',0.75)

pl = struct with fields:
 Ag: 0.7996
 Ac: 0.8793
 Ar: 0.0177
 As: 0.3187
 At: 1.7514

Input Arguments
p618cfg — P.618 configuration
p618Config object

 p618PropagationLosses

2-23

P.618 configuration required for the calculation of the propagation losses, cross-polarization
discrimination, and sky noise temperature, specified as a p618Config object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'StationHeight',1.5 specifies the earth station height as 1.5 km.

StationHeight — Height of earth station
nonnegative scalar

Height of the earth station above the mean sea level in km, specified as the comma-separated pair
consisting of 'StationHeight' and a nonnegative scalar. The maximum supported value is 100. If the
local data is not available as an input, the function uses the digital maps provided in ITU-R P.1511
section 1, Annex 1 [3] to obtain the station height value.
Data Types: double | single

Temperature — Temperature of earth surface
nonnegative scalar

Temperature of the earth surface in kelvin, specified as the comma-separated pair consisting of
'Temperature' and a nonnegative scalar. If the local data is not available as an input, the function
uses the map of the mean annual surface temperature provided in ITU-R P.1510 section 1, Annex 1 [4]
to obtain the temperature value.
Data Types: double | single

Pressure — Dry air pressure at earth surface
nonnegative scalar

Dry air pressure at the earth surface in hPa, specified as the comma-separated pair consisting of
'Pressure' and a nonnegative scalar. If the local data is not available as an input, the function uses
the mean annual global reference atmosphere provided in ITU-R P.835 section 1.1, Annex 1 [5] to
obtain the air pressure value.
Data Types: double | single

WaterVaporDensity — Surface water vapor density
nonnegative scalar

Surface water vapor density in g/m3, specified as the comma-separated pair consisting of
'WaterVaporDensity' and a nonnegative scalar. If the local data is not available as an input, the
function uses the digital maps provided in ITU-R P.836 section 1, Annex 1 [6] to estimate the value of
the water vapor density.
Data Types: double | single

IntegratedWaterVaporContent — Integrated water vapor content
positive scalar

Integrated water vapor content exceeded for the percentage of GasAnnualExceedance in an average
year, specified as the comma-separated pair consisting of 'IntegratedWaterVaporContent' and a

2 Functions

2-24

positive scalar. Units are in kg/m2 or mm. If the local data is not available as an input, the function
uses the digital maps provided in ITU-R P.836 section 1, Annex 2 [6] to obtain the value of the
integrated water vapor content.
Data Types: double | single

TotalColumnarContent — Total columnar content of cloud liquid water
nonnegative scalar

Total columnar content of the cloud liquid water exceeded for the percentage of
CloudAnnualExceedance in an average year, specified as the comma-separated pair consisting of
'TotalColumnarContent' and a nonnegative scalar. Units are in kg/m2 or mm. If the local data is
not available as an input, the function uses the digital maps provided in ITU-R P.840 section 3.1,
Annex 1 [7] to obtain the value of the total columnar content.
Data Types: double | single

RainRate — Point rainfall rate
nonnegative scalar

Point rainfall rate at the location for 0.01% of an average year, specified as the comma-separated pair
consisting of 'RainRate' and a nonnegative scalar. Units are in mm/hr. If the local data is not
available as an input, the function uses the digital maps provided in ITU-R P.837, Annex 1 [8] to
obtain the value of the point rainfall rate.
Data Types: double | single

WetSurfaceRefractivity — Median value of wet term of surface refractivity
nonnegative scalar

Median value of the wet term of the surface refractivity, specified as the comma-separated pair
consisting of 'WetSurfaceRefractivity' and a nonnegative scalar. If the local data is not available
as an input, the function uses the digital maps provided in ITU-R P.453 section 2.2, Annex 1 [9] to
obtain the value of the wet surface refractivity.
Data Types: double | single

MeanRadiatingTemperature — Atmospheric mean radiating temperature
nonnegative scalar

Atmospheric mean radiating temperature in kelvin, specified as the comma-separated pair consisting
of 'MeanRadiatingTemperature' and a nonnegative scalar. If the local data is not available as an
input, the function uses an atmospheric mean radiating temperature of 275 K in the computation.
Data Types: double | single

Output Arguments
pl — Earth-space propagation losses information
structure

Earth-space propagation losses information, returned as a structure containing these fields.

Fields Description
At Total atmospheric attenuation (in dB)

 p618PropagationLosses

2-25

Fields Description
Ag Gaseous attenuation (in dB)
Ac Cloud and fog attenuation (in dB)
Ar Rain attenuation (in dB)
As Attenuation due to tropospheric scintillation (in

dB)

xpd — Cross-polarization discrimination
scalar

Cross-polarization discrimination in (dB) not exceeded for the percentage of the
RainAnnualExceedance, returned as a scalar.

tsky — Sky noise temperature
nonnegative scalar

Sky noise temperature (in kelvin) at the ground station antenna, returned as a nonnegative scalar.

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

[2] International Telecommunication Union, ITU-R Recommendation P.676 (08/2019).

[3] International Telecommunication Union, ITU-R Recommendation P.1511 (08/2019).

[4] International Telecommunication Union, ITU-R Recommendation P.1510 (06/2017).

[5] International Telecommunication Union, ITU-R Recommendation P.835 (12/2017).

[6] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).

[7] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).

[8] International Telecommunication Union, ITU-R Recommendation P.837 (06/2017).

[9] International Telecommunication Union, ITU-R Recommendation P.453 (08/2019).

[10] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[11] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

2 Functions

2-26

See Also
Objects
p618Config | p618SiteDiversityConfig

Functions
p618SiteDiversityOutage

Introduced in R2021a

 p618PropagationLosses

2-27

p618SiteDiversityOutage
Calculate outage probability due to rain attenuation with site diversity

Syntax
Outage = p618SiteDiversityOutage(cfgsd)
Outage = p618SiteDiversityOutage(cfgsd,Name,Value)

Description
Outage = p618SiteDiversityOutage(cfgsd) returns the outage probability due to rain
attenuation with site diversity. The function calculates this value as per the ITU-R P.618
recommendation [1].

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

Outage = p618SiteDiversityOutage(cfgsd,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

2 Functions

2-28

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

outage = 0.0338

Calculate Outage Probability with Site Diversity Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute these commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a default P.618 site diversity configuration object. Change the signal frequency to 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the separation between two sites as 50 km and the attenuation threshold on the two links as
[9 9] dB.

cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability for the specified site diversity configuration.

outage = p618SiteDiversityOutage(cfgsd,'RainAnnualExceedances',[0.01 0.05 0.2],...
 'RainProbability1',0.3,...
 'RainProbability2',0.5)

outage = 0.0339

 p618SiteDiversityOutage

2-29

Input Arguments
cfgsd — P.618 site diversity configuration
p618SiteDiversityConfig object

P.618 site diversity configuration required for the calculation of the outage probability due to rain
attenuation, specified as a p618SiteDiversityConfig object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RainAnnualExceedances',[0.01 0.02 0.03 0.05] specifies the average annual
time percentage of excess for the rain attenuation.

RainAnnualExceedances — Average annual time percentage of excess for rain attenuation
nonnegative vector

Average annual time percentage of excess for the rain attenuation, specified as the comma-separated
pair consisting of 'RainAnnualExceedances' and a nonnegative vector. The values in this vector
must be less than the probability of rain at the two sites.

If the local data is not available as an input, the function uses [0.01 0.02 0.03 0.05 0.1 0.2
0.3 0.5 1 2 3 5] as the default vector.
Data Types: double | single

RainAttenuations1 — Rain attenuations at site 1
nonnegative vector

Rain attenuations (in dB) at site 1, specified as the comma-separated pair consisting of
'RainAttenuations1' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 [1] recommendation to calculate the rain attenuations for site 1.

Note If you do not specify RainAttenuations1, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainAttenuations2 — Rain attenuations at site 2
nonnegative vector

Rain attenuations (in dB) at site 2, specified as the comma-separated pair consisting of
'RainAttenuations2' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

2 Functions

2-30

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 recommendation to calculate the rain attenuations for site 2.

Note If you do not specify RainAttenuations2, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainProbability1 — Probability of rain for site 1
nonnegative scalar

Probability of (in %) rain for site 1, specified as the comma-separated pair consisting of
'RainProbability1' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.
Data Types: double | single

RainProbability2 — Probability of rain for site 2
nonnegative scalar

Probability of (in %) rain for site 2, specified as the comma-separated pair consisting of
'RainProbability2' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.
Data Types: double | single

Output Arguments
Outage — Outage probability due to rain attenuation with site diversity
nonnegative scalar

Outage probability due to rain attenuation with site diversity, returned as a nonnegative scalar. This
argument predicts the joint probability (Pr(A1≥ a1, A2 ≥ a2)), where the attenuation on the path of the
site 1 must exceed a1 and the attenuation on the path of the site 2 must exceed a2.

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

[2] International Telecommunication Union, ITU-R Recommendation P.837 (06/2017).

[3] International Telecommunication Union, ITU-R Recommendation P.1511 (08/2019).

[4] International Telecommunication Union, ITU-R Recommendation P.1510 (06/2017).

[5] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).

[6] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).

[7] International Telecommunication Union, ITU-R Recommendation P.453 (08/2019).

 p618SiteDiversityOutage

2-31

[8] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[9] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also
Objects
p618Config | p618SiteDiversityConfig

Functions
p618PropagationLosses

Introduced in R2021a

2 Functions

2-32

ccsdsTCWaveform
Generate CCSDS TC waveform

Syntax
waveform = ccsdsTCWaveform(bits,cfgFormat)
[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat)

Description
waveform = ccsdsTCWaveform(bits,cfgFormat) generates a Consultative Committee for
Space Data Systems (CCSDS) Telecommand (TC) time-domain waveform, waveform, for the
corresponding input bits, bits, and the given format configuration, cfgFormat.

[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat) also returns the bits
obtained after TC synchronization and channel coding sublayer operations.

Examples

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

 ccsdsTCWaveform

2-33

c = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
 bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
 waveform = ccsdsTCWaveform(bits,cfg);
 c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

Create CCSDS TC Waveform for Acquisition Sequence

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for a acquisition sequence with 20 octets.

Create a CCSDS TC configuration object, and then specify the object properties. Display the object
properties.

2 Functions

2-34

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

cfg = ccsdsTCConfig;
cfg.DataFormat = "acquisition sequence";
cfg.Modulation = "PCM/PM/biphase-L";
cfg.ModulationIndex = 1.2;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "acquisition sequence"
 Modulation: "PCM/PM/biphase-L"
 ModulationIndex: 1.2000
 SamplesPerSymbol: 10

Generate the CCSDS TC waveform.

bits = repmat([0;1],8*10,1); % Alternating 1s and 0s with 0s as a starting sequence bit
waveform = ccsdsTCWaveform(bits,cfg);

Input Arguments
bits — Information bits
binary-valued column vector

Information bits, specified as a binary-valued column vector.

• When you set the DataFormat property of the ccsdsTCConfig object to "CLTU", the length of
this vector must be an integer multiple of 8.

• When you set the DataFormat property of the ccsdsTCConfig object to "acquisition
sequence" or "idle sequence", this vector must be a sequence of alternating 1s and 0s,
starting with either 1 or 0.

Data Types: double | int8 | logical

cfgFormat — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object define
the parameters required for CCSDS TC waveform generation.

Output Arguments
waveform — Generated time-domain CCSDS TC waveform
column vector

Generated time-domain CCSDS TC waveform, returned as a column vector. The waveform output is
generated in the form of complex in-phase quadrature (IQ) samples.
Data Types: double

encodedBits — Output bits obtained after TC synchronization and channel coding sublayer
operations
column vector

Output bits obtained after TC synchronization and channel coding sublayer operations, returned as a
column vector.

 ccsdsTCWaveform

2-35

Data Types: double

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCIdealReceiver

Objects
ccsdsTCConfig | ccsdsTMWaveformGenerator

Introduced in R2021a

2 Functions

2-36

ccsdsTCIdealReceiver
Ideal receiver for CCSDS TC waveform

Syntax
bits = ccsdsTCIdealReceiver(waveform,cfg)
bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value)

Description
bits = ccsdsTCIdealReceiver(waveform,cfg) recovers transfer frames from a Consultative
Committee for Space Data Systems (CCSDS) Telecommand (TC) waveform, generated using the
ccsdsTCWaveform function. Output bits is the recovered bits for the given format configuration
cfg.

bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value) specifies options using one or
more name-value pairs. For example, 'NoiseVariance',1e-11 specifies the noise variance of
additive white Gaussian noise (AWGN) on the received waveform as 1e-11.

Examples

Recover Transfer Frame from CCSDS TC Waveform

Recover the transfer frame from the Consultative Committee for Space Data Systems (CCSDS)
Telecommand (TC) waveform.

Create a CCSDS TC object and specify the object properties.

cfg = ccsdsTCConfig;
cfg.HasRandomizer = 1;
cfg.SamplesPerSymbol = 12;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 12

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the transfer frame length and generate the CCSDS TC waveform for the transfer frame.

 ccsdsTCIdealReceiver

2-37

transferFrameLength = 12; % Number of octets in each transfer frame
data = randi([0 1],8*transferFrameLength,1); % bits in the transfer frame
waveform = ccsdsTCWaveform(data,cfg);

Recover the transfer frame from the CCSDS TC waveform

decodedBits = ccsdsTCIdealReceiver(waveform,cfg,'DecodingMode',"error detecting");

Check if the transfer frame is recovered successfully.

rxBits = decodedBits{1};
bits = rxBits((1:8*transferFrameLength)');
isequal(bits,data)

ans = logical
 1

Input Arguments
waveform — Received time-domain signal
column vector

Received time-domain signal, consisting of complex in-phase quadrature (IQ) samples, specified as a
column vector. The waveform input is a CCSDS TC waveform.

A CCSDS TC waveform can contain one or more communications link transmission units (CLTUs).
Each CLTU can contain one or more transfer frames.
Data Types: single | double
Complex Number Support: Yes

cfg — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object
determine the parameters required for CCSDS TC waveform generation and reception.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ccsdsTCIdealReceiver(waveform,cfg,'NoiseVariance',1e-11) specifies the
noise variance of AWGN on the received waveform as 1e-11.

NoiseVariance — Noise variance of AWGN
1e-10 (default) | positive scalar

Noise variance of AWGN that is added to the input IQ symbols of the waveform, specified as a
positive scalar.

2 Functions

2-38

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

DecodingMode — Decoding mode
"error correcting" (default) | "error detecting"

Decoding mode to decode the Bose Chaudhuri Hocquenghem (BCH) encoded codewords, specified as
"error correcting" or "error detecting".

'DecodingMode' defines the allowed number of errors in the start sequence of the CLTU. In error
detecting mode, the allowed number of errors in the start sequence is zero. In error correcting mode,
the allowed number of errors in the start sequence is one.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "BCH".
Data Types: char | string

DetectionThreshold — Threshold to detect start sequence
0.7 (default) | scalar in the range [0.5, 1]

Threshold to detect the start sequence, by calculating the normalized correlation metric with the
known start sequence, specified as a scalar in the range [0.5, 1]. When the computed normalized
correlation metric is greater than or equal to 'DetectionThreshold', the start sequence of the
CLTU is detected.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

Output Arguments
bits — Recovered transfer frames
cell array of column vectors

Recovered transfer frames, returned as a cell array of column vectors. Each element of the cell array
is of data type int8.

Bits in the cell array of one or more column vectors, corresponds to the number of CLTUs present in
the waveform input. Recovered transfer frames of CLTUs can contain fill bits. The fill bits removal
procedure is not performed in the TC synchronization and channel coding sublayer.
Data Types: int8 | cell

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

 ccsdsTCIdealReceiver

2-39

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCWaveform

Objects
ccsdsTCConfig

Introduced in R2021a

2 Functions

2-40

info
Characteristic information about object

Syntax
s = info(obj)

Description
s = info(obj) returns a structure containing the characteristic information of the specified input
object obj.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL = 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 2
 FECFrame: "normal"
 MODCOD: [21 16]

 info

2-41

 DFL: 47008
 ScalingMethod: "outer radius as 1"
 HasPilots: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 2
 ISSYI: true
 ISCRFormat: "short"

 Show all properties

Get the characteristic information about the DVB-S2 waveform generator.

info(s2WaveGen)

ans = struct with fields:
 ModulationScheme: {'16APSK' '8PSK'}
 LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.

txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20×1 complex

 0.0153 + 0.4565i
 0.2483 + 0.5535i
 0.3527 + 0.3972i
 0.3541 - 0.0855i
 0.3505 - 0.4071i
 0.4182 - 0.1962i
 0.5068 + 0.0636i
 0.4856 - 0.1532i
 0.3523 - 0.4153i
 0.1597 - 0.2263i
 ⋮

2 Functions

2-42

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]
 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

 info

2-43

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

Get DVB-RCS2 Waveform Generator Information

Get information from a dvbrcs2WaveformGenerator System object by using the info object
function.

Create a DVB-RCS2 System object, and then specify its properties.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "control";
wg.WaveformID = 33;
wg.FilterSpanInSymbols = 12;
disp(wg)

 dvbrcs2WaveformGenerator with properties:

 TransmissionFormat: "TC-LM"
 ContentType: "control"
 IsCustomWaveform: false
 WaveformID: 33
 PreBurstGuardLength: 0

2 Functions

2-44

 PostBurstGuardLength: 0
 FilterSpanInSymbols: 12
 SamplesPerSymbol: 4

 Use get to show all properties

Get the characteristic information about the DVB-RCS2 waveform generator.

info(wg)

ans = struct with fields:
 BurstLength: 566
 PayloadLengthInBytes: 100
 MappingScheme: "QPSK"
 CodeRate: "3/4"
 PreambleLength: 32
 PostambleLength: 0
 PilotPeriod: 0
 PilotBlockLength: 0
 PermutationParameters: [23 10 8 2 1]
 UniqueWord: "0C330C0FF3F3033F"
 PilotSum: 0

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding
 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter

 info

2-45

 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

Get ETSI Rician Channel Information

Get information from a etsiRicianChannel System object by using the info object function.

Create a European Telecommunication Standards Institute (ETSI) Rician channel System object, and
then specify its properties.

chan = etsiRicianChannel;
chan.SampleRate = 2e5;
chan.KFactor = 10;

2 Functions

2-46

chan.MaximumDopplerShift = 20;
chan.NumSinusoids = 58;
disp(chan)

 etsiRicianChannel with properties:

 SampleRate: 200000
 KFactor: 10
 MaximumDopplerShift: 20

 Use get to show all properties

Pass data through the channel.

txWaveform = randi([0 1],500,1);
rxWaveform = chan(txWaveform);

Get the characteristic information about the ETSI Rician channel.

info(chan)

ans = struct with fields:
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 500

Get P.681-11 LMS Channel Information

Get channel information from a p681LMSChannel System object by using the info object function.

Create an ITU-R P.681-11 LMS channel System object and specify its properties.

chan = p681LMSChannel;
chan.SampleRate = 10e3; % Hz
chan.MobileSpeed = 2; % m/s
chan.Environment = "RuralWooded";
disp(chan)

 p681LMSChannel with properties:

 SampleRate: 10000
 InitialState: "Good"
 CarrierFrequency: 2.2000e+09
 ElevationAngle: 45
 MobileSpeed: 2
 AzimuthOrientation: 0
 Environment: "RuralWooded"
 ChannelFiltering: true

 Use get to show all properties

QPSK-modulate a random input signal, and then pass it through the channel.

numSamples = 2e4;
txWaveform = pskmod(randi([0 3],numSamples,1),4);
[rxWaveform,pathGains,sampleTimes,stateSeries] = chan(txWaveform);

 info

2-47

Get the characteristic information about the P.681-11 LMS channel.

info(chan)

ans = struct with fields:
 PathDelays: 0
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples2 = 3e4;
txWaveform2 = pskmod(randi([0 3],numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.

info(chan)

ans = struct with fields:
 PathDelays: 0
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 50000

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230
 InitialStateFormat: "seconds"
 InitialTime: 0

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.

pgen.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388600

2 Functions

2-48

 TotalSecondsElapsed: 0.820000000000000

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgen1 = gpsPCode;
pgen1.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgen1 =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230
 InitialStateFormat: "seconds"
 InitialTime: 0.820000024437928

pgen1.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388600
 TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23e6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230
 InitialStateFormat: "seconds"
 InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388601
 TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round() function.

Compare the output of each System object call.

code = pgen();
code1 = pgen1();
code2 = pgen2();
isequal(code, code1) % code and code1 are equal

 info

2-49

ans = logical
 1

isequal(code1,code2) % code1 and code2 are unequal

ans = logical
 0

Input Arguments
obj — Input object
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | p681LMSChannel | gpsPCode

Input object to get information from, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, dvbrcs2WaveformGenerator, ccsdsTMWaveformGenerator,
etsiRicianChannel, p681LMSChannel, or gpsPCode System object.

Output Arguments
s — Characteristic information of specified object
structure

Characteristic information of the specified object, returned as a structure. The fields of the structure
depend on the obj input.

• If obj is a dvbs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation (DVB-S2) waveform generator.

Field Value Description
ModulationScheme String scalar (default) or cell

array of character vectors
Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to the
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

2 Functions

2-50

Field Value Description
LDPCCodeIdentifier String scalar (default) or cell

array of character vectors
LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

• If obj is a dvbs2xWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation extended (DVB-S2X) waveform generator.

Field Value Description
FECFrame String scalar (default) or cell

array of character vectors
FEC frame format, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

ModulationScheme String scalar (default) or cell
array of character vectors

Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

LDPCCodeIdentifier String scalar (default) or cell
array of character vectors

LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of
dvbs2xWaveformGenerator
object for multi-input streams.

• If obj is a dvbrcs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Second Generation
Return Channel over Satellite (DVB-RCS2) waveform generator.

 info

2-51

Field Value Description
BurstLength positive integer Length of the burst, in

symbols, prior to the pulse
shaping, returned as a
positive integer.

PayloadLengthInBytes integer in the range [3,
65,535]

Input data length, in bytes, to
the forward error correction
(FEC) encoder, returned as a
integer in the range [3,
65,535].

MappingScheme "pi/2-BPSK", "QPSK",
"8PSK", or "16QAM"

Symbol mapping and
modulation scheme to
generate the DVB-RCS2
waveform, returned as
"pi/2-BPSK", "QPSK",
"8PSK", or "16QAM".

CodeRate "1/3", "1/2", "2/3",
"3/4", "4/5", "5/6",
"6/7", or "7/8"

Code rate of the channel
encoder, returned as "1/3",
"1/2", "2/3", "3/4",
"4/5", "5/6", "6/7", or
"7/8".

PreambleLength integer in the range [0, 255] Number of preamble symbols
that are prefixed to the burst
symbols prior to the
modulation, returned as a
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

2 Functions

2-52

Field Value Description
PostambleLength integer in the range [0, 255] Number of postamble symbols

that are suffixed to the burst
symbols, prior to the
modulation, returned as a
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

PilotPeriod integer in the range [0, 4095] Pilot symbol periodicity,
including the burst symbols,
returned as a integer in the
range [0, 4095].

This period represents the
length of the sequence from
the first symbol of a pilot
block to the first symbol of the
next pilot block in symbols or
chips.

PilotBlockLength integer in the range [1, 255] Length of the pilot block, in
symbols, returned as a integer
in the range [1, 255].

PermutationParameters five-element vector DVB-RCS2 turbo encoder
permutation control
parameters that are used to
generate turbo encoder
interleaver indices, returned
as a five-element vector in
order: P, Q0, Q1, Q2, and Q3.

UniqueWord character array or string
scalar

Hexadecimal string consisting
of combined symbols of the
preamble, one pilot block, and
the postamble sequence,
returned as a character array
or string scalar.

• If obj is a ccsdsTMWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Consultative Committee for Space Data Systems
(CCSDS) Telemetry (TM) waveform generator.

 info

2-53

Field Value Description
ActualCodeRate positive scalar in range [0 1] Numeric value of the code

rate of the channel coding
scheme, returned as a positive
scalar in the range [0, 1]. This
value is used to generate the
CCSDS TM waveform.

NumBitsPerSymbol positive integer Number of bits per modulated
symbol, returned as a positive
integer.

SubcarrierFrequency positive scalar Subcarrier frequency,
returned as a positive scalar.
This field is applicable only
when the Modulation
property of
ccsdsTMWaveformGenerato
r object is set to "PCM/PSK/
PM". For other cases, this
value is returned as null.

• If obj is an etsiRicianChannel System object, the output structure has these fields, consisting
of information about the fading channel.

Field Value Description
ChannelFilterDelay 0 Channel filter delay in

samples returned as 0 always
(due to flat-fading nature of
the channel).

ChannelFilterCoefficien
ts

1 Channel filter coefficient used
to convert path gains to
channel filter tap gains,
returned as 1 always (as
etsiRicianChannel
describes a single path
channel).

NumSamplesProcessed positive integer Number of samples processed
by the channel object since
the last reset, returned as a
positive integer.

• If obj is a p681LMSChannel System object, the output structure has these fields, consisting of
information about the ITU-R P.681-11 land-mobile satellite (LMS) fading channel.

Field Value Description
PathDelays 0 Delay of discrete channel path

in seconds returned as 0
always (due to flat-fading
nature of the channel).

2 Functions

2-54

Field Value Description
ChannelFilterDelay 0 Channel filter delay in

samples returned as 0 always
(due to flat-fading nature of
the channel).

ChannelFilterCoefficien
ts

1 Channel filter coefficient used
to convert path gains to
channel filter tap gains,
returned as 1 always (as
p681LMSChannel describes a
single path channel).

NumSamplesProcessed nonnegative integer Number of samples processed
by the channel object since
the last reset, returned as a
nonnegative integer.

• If obj is a gpsPCode System object, the output structure has these fields, consisting of state
information about the GPS P-code generator.

Field Value Description
TotalNumChipsElapsed positive integer Total number of P-code chips

that elapsed from the
beginning of the week,
returned as a positive integer.
The beginning of a week is
marked at midnight Saturday
night - Sunday morning.

TotalSecondsElapsed real-valued scalar Total seconds elapsed from
the beginning of the week,
returned as a real-valued
scalar.

See Also
Functions
flushFilter

Objects
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | p681LMSChannel | gpsPCode

Introduced in R2021a

 info

2-55

flushFilter
Flush transmit filter

Syntax
out = flushFilter(obj)

Description
out = flushFilter(obj) passes zeros through the transmit filter in the input waveform
generator to flush the residual data samples that remain in the filter state. The function returns the
residual data samples.

You must call the input waveform generator System object (not only create the object) prior to using
the flushFilter object function. The number of zeros passed through the transmit filter depends
on the filter delay. This object function is required for the receiver simulations to recover all of the
bits in the last physical layer frame.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL = 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

2 Functions

2-56

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 2
 FECFrame: "normal"
 MODCOD: [21 16]
 DFL: 47008
 ScalingMethod: "outer radius as 1"
 HasPilots: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 2
 ISSYI: true
 ISCRFormat: "short"

 Show all properties

Get the characteristic information about the DVB-S2 waveform generator.

info(s2WaveGen)

ans = struct with fields:
 ModulationScheme: {'16APSK' '8PSK'}
 LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.

txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20×1 complex

 0.0153 + 0.4565i
 0.2483 + 0.5535i
 0.3527 + 0.3972i
 0.3541 - 0.0855i
 0.3505 - 0.4071i
 0.4182 - 0.1962i
 0.5068 + 0.0636i
 0.4856 - 0.1532i
 0.3523 - 0.4153i

 flushFilter

2-57

 0.1597 - 0.2263i
 ⋮

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

2 Functions

2-58

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
disp(FramesLost)

 0

disp(pktCRCStat)

 {20×1 logical}

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]

 flushFilter

2-59

 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

2 Functions

2-60

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding
 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter
 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

 flushFilter

2-61

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

Input Arguments
obj — Waveform generator
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | ccsdsTMWaveformGenerator

Waveform generator object, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, or ccsdsTMWaveformGenerator System object.

To enable the flushFilter object function when you specify obj as a
ccsdsTMWaveformGenerator System object, you must set these dependencies in the
ccsdsTMWaveformGenerator object.

• Set the WaveformSource property to "synchronization and channel coding".
• Set the ChannelCoding property to one of these values.

• "none"
• "RS"
• "turbo"
• "LDPC" — In this case, you must also set the IsLDPCOnSMTF property to 0 (false)
• "convolutional" — In this case, you must also set the ConvolutionalCodeRate property

to either "1/2" or "2/3"
• "concatenated" — In this case, you must also set the ConvolutionalCodeRate property to

either "1/2" or "2/3"
• Set the Modulation property to either "BPSK" or "QPSK".

Output Arguments
out — Residual data samples that remain in filter state
column vector

Residual data samples that remain in the filter state, returned as a column vector. The length of the
column vector is equal to the product of the SamplesPerSymbol and FilterSpanInSymbols
properties of the input object, obj.

2 Functions

2-62

When you specify obj as dvbs2WaveformGenerator or dvbs2xWaveformGenerator System
object and the NumInputStream property as a value greater than 1, the data fields generated from
different input streams are merged in a round-robin technique into a single stream. The residual
samples of the frame after the merging process are flushed out.
Data Types: double

See Also
Functions
info

Objects
ccsdsTMWaveformGenerator | dvbs2WaveformGenerator | dvbs2xWaveformGenerator

Introduced in R2021a

 flushFilter

2-63

satellite
Add satellites to satellite scenario

Syntax
satellite(scenario,file)
satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly)
satellite(scenario,positiontable)
satellite(scenario,positiontable)
satellite(scenario,positiontable,velocitytable)
satellite(scenario,positiontimeseries)
satellite(scenario,positiontimeseries,velocitytimeseries)
satellite(___ ,Name,Value)
sat = satellite(___)

Description
sat = satellite(scenario,file) adds a Satellite object from file to the satellite scenario
specified by scenario. The yaw (z) axes of the satellites point toward nadir and the roll (x) axes of
the satellites align with their respective inertial velocity vectors.

satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly) adds a Satellite object from Keplerian elements defined in the
Geocentric Celestial Reference Frame (GCRF) to the satellite scenario.

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable to the scenario.

satellite(scenario,positiontable,velocitytable) adds a Satellite object from position
data specified in positiontable (timetable object) and velocity data specified in
velocitytable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries) adds a Satellite object from position data
specified in positiontimeseries to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries,velocitytimeseries) adds a Satellite object
to the scenario from position (in meters) data specified in positiontimeseries (timeseries
object) and velocity (in meters/second) data specified in velocitytimeseries (timeseries
object). This function creates a Satellite with OrbitPropagator="ephemeris".

satellite(___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes.

2 Functions

2-64

sat = satellite(___) returns a vector of handles to the added satellites. Specify any input
argument combination from previous syntaxes.

Note When the AutoSimulate property of the satelliteScenario is false, you can modify the
satellite only when the SimulationStatus is NotStarted. You can use the restart function
to reset SimulationStatus to NotStarted, but doing so erases the simulation data.

Examples

Add Four Satellites from Position Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from a position timetable to a satellite scenario and
visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the GCRF coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT);

Visualize the trajectories of the satellites.

play(sc);

Visualize Satellite Trajectories

Create a satellite scenario object.

sc = satelliteScenario;

Load the satellite ephemeris timetable in the Earth Centered Earth Fixed (ECEF) coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT","velocityTT");

Add four satellites to the scenario.

sat = satellite(sc,positionTT,velocityTT,"CoordinateFrame","ecef");

Visualize the trajectories of the satellites.

play(sc);

 satellite

2-65

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

2 Functions

2-66

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

 satellite

2-67

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];

2 Functions

2-68

argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

 satellite

2-69

Visualize GPS Constellation

Set up the satellite scenario.

startTime = datetime(2021,8,5);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add satellites to the scenario from a SEM almanac file.

sat = satellite(sc,"gpsAlmanac.txt","OrbitPropagator","gps");

Visualize the GPS constellation.

v = satelliteScenarioViewer(sc);

2 Functions

2-70

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

file — Type of file
character vector | string scalar

Type of the file, specified as a character vector or a string scalar. The file can be a TLE file or a SEM
almanac file and must exist in the current folder, in a folder on the MATLAB path, or it must include a
full or relative path to a file.

For more information on TLE files, see “Two Line Element (TLE) Files”.
Data Types: char | string

semimajoraxis, eccentricity, inclination, RAAN, argofperiapsis, trueanomaly —
Keplerian elements defined in GCRF
comma-separated list of vectors

Keplerian elements defined in the GCRF, specified as a comma-separated list of vectors. The
Keplerian elements are:

• semimajoraxis – This vector defines the semimajor axis of the orbit of the satellite. Each value is
equal to half of the longest diameter of the orbit.

 satellite

2-71

• eccentricity – This vector defines the shape of the orbit of the satellite.
• inclination – This vector defines the angle between the orbital plane and the xy-plane of the

GCRF for each satellite in the range [0,180].
• RAAN (right ascension of ascending node) – This element defines the angle between the xy-plane of

the GCRF and the direction of the ascending node, as seen from the Earth's center of mass for
each satellite in the range [0,360). The ascending node is the location where the orbit crosses the
xy-plane of the GCRF and goes above the plane.

• argofperiapsis (argument of periapsis) – This vector defines the angle between the direction of
the ascending node and the periapsis, as seen from the Earth's center of mass in the range
[0,360). Periapsis is the location on the orbit that is closest to the Earth's center of mass for each
satellite.

• trueanomaly – This vector defines the angle between the direction of the periapsis and the
current location of the satellite, as seen from the Earth's center of mass for each satellite in the
range [0,360).

Note All angles defined outside the specified range is automatically converted to the corresponding
value within the acceptable range.

For more information on Keplerian elements, see “Orbital Elements”.

positiontable — Position data
timetable | table

Position data in meters, specified as a timetable created using the timetable function or table
function. The positiontable has exactly one monotonically increasing column of rowTimes
(datetime or duration) and either:

• One or more columns of variables, where each column contains data for an individual satellite
over time.

• One column of 2-D data, where the length of one dimension must equal 3 and the remaining
dimension defines the number of satellites in the ephemeris.

• One column of 3-D data, where the length of one dimension must equal 3, one dimension is a
singleton, and the remaining dimension defines the number of satellites in the ephemeris.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames property are used by default if no names are
provided as an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame
name-value argument is provided. States are held constant in GCRF for scenario timesteps outside of
the time range of positiontable.
Data Types: table | timetable

velocitytable — Velocity data
timetable | table

Velocity data in meters/second, specified as a timetable created using the timetable function or the
table function. The velocitytable has exactly one monotonically increasing column of rowTimes
(datetime or duration), and either:

• One or more columns of variables, where each column contains data for an individual satellite
over time.

2 Functions

2-72

• One column of 2-D data, where the length of one dimension must equal 3 and the remaining
dimension defines the number of satellites in the ephemeris.

• One column of 3-D data, where the length of one dimension must equal 3, one dimension is a
singleton, and the remaining dimension defines the number of satellites in the ephemeris.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of velocitytable.
Data Types: table | timetable

positiontimeseries — Position data
timeseries object | tscollection object

Position data in meters, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of positiontimeseries.

Data Types: timeseries | tscollection

velocitytimeseries — Velocity data
timeseries object | tscollection object

Velocity data in meters/second, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of velocitytimeseries.

Data Types: timeseries | tscollection

 satellite

2-73

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: 'Name'='MySatellite' sets the satellite name to 'MySatellite'.

CoordinateFrame — Satellite state coordinate frame
"inertial" (default) | "ecef" | "geographic"

Satellite state coordinate frame, specified as the comma-separated pair consisting of
'CoordinateFrame' and one of these values:

• "inertial" — For timeseries or timetable data, specifying this value accepts the position
and velocity in the GCRF frame.

• "ecef" — For timeseries or timetable data, specifying this value accepts the position and
velocity in the ECEF frame.

• "geographic" — For timeseries or timetable data, specifying this value accepts the position
[lat, lon, altitude], where lat and lon are latitude and longitude in degrees, and altitude is the
height above the World Geodetic System 84 (WGS 84) ellipsoid in meters.

Velocity is in the local NED frame.

Dependencies

To enable this name value argument, ephemeris data inputs (timetable or timeseries).
Data Types: string | char

GPSweekepoch — GPS week number
datetime scalar

GPS week number, specified as a datetime scalar. The GPS week number specifies the reference
date that the function uses when counting weeks defined in the SEM almanac file. If you do not
specify GPSweekepoch, the function uses the datetime scalar that coincides with the latest GPS week
number rollover date before the start time.

This argument applies only if you use a SEM almanac file. If you specify GPSweekepoch and you are
not using a SEM almanac file, the function ignores the argument value.
Data Types: string | char

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Name — satellite name
"satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

2 Functions

2-74

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one satellite is added, specify Name as a string scalar or a character vector.
• If multiple satellites are added, specify Name as a string scalar, character vector, string vector or a

cell array of character vectors. All satellites added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of satellites being added. Each satellite is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the satellites added by the satellite object function.
Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" | "sdp4" | "two-body-keplerian" | "ephemeris" | "gps"

This property is read-only.

Set OrbitPropagator on satellite object creation.

Name of the orbit propagator used for propagating the satellite position and velocity, specified as
"sgp4", "sdp4", "two-body-keplerian", "ephemeris", or "gps". The value depends on how
you specify the satellite.

• Timetable, table, timeseries, or tscollection — OrbitPropagator is "ephemeris".
• SEM almanac file — OrbitPropagator can be any value except "ephemeris". The initialization

is performed using the "gps" orbit propagator.
• TLE file — OrbitPropagator can be "two-body-keplerian", "sgp4", or "sdp4". If the

orbital period is less than 225 minutes, the initialization is performed using "sgp4". Otherwise,
the initialization is performed using "sdp4".

• Keplerian elements — OrbitPropagator can be "two-body-keplerian", "sgp4", or
"sdp4".

If the satellite is initialized using a timetable, table, timeseries object, or tscollection object,
the default propagator is "ephemeris". If the initialization is performed using a SEM almanac file,
the default propagator is "gps". Otherwise, if the orbital period is less than 225 minutes, the default
propagator is "sgp4", else "sdp4".

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite automatically selects "ephemeris" orbit propagator.

Output Arguments
sat — Satellite in the scenario
Satellite object

Satellite in the scenario, returned as a Satellite object belonging to the satellite scenario specified
by scenario.

You can modify the Satellite object by changing its property values.

 satellite

2-75

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | receiver | transmitter | show | play | hide | orbitalElements

Topics
“Comparison of Orbit Propagators”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-76

conicalSensor
Package: matlabshared.satellitescenario

Add conical sensor to satellite scenario

Syntax
conicalSensor(parent)
conicalSensor(parent,Name,Value)
sensor = conicalSensor(___)

Description
conicalSensor(parent) adds ConicalSensor object to each parent in the vector parent using
default parameters. parent can be a satellite, groundStation, or a gimbal.

conicalSensor(parent,Name,Value) adds conical sensors to the parents in parent using
additional parameters specified by optional name-value arguments. For example,
'MaxViewAngle',90 specifies a field of view angle of 90 degrees.

sensor = conicalSensor(___) returns added conical sensors as a row vector sensor. Specify
any input argument combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137; % meters
eccentricity = 0;

 conicalSensor

2-77

inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees
 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]
 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g =
 Gimbal with properties:

2 Functions

2-78

 Name: Gimbal 3
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

 conicalSensor

2-79

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17
 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

2 Functions

2-80

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
parent — Element of scenario to which conicalSensor is added
scalar | vector

Element of scenario to which the conicalSensor is added, specified as a scalar or vector of satellites,
ground stations or gimbals. The number of conicalSensors specified is determined by the size of the
inputs.

• If parent is a scalar, all conicalSensors are added to the parent.
• If parent is a vector and the number of conicalSensors specified is one, that conicalSensor is

added to each parent.
• If parent is a vector and the number of conicalSensors specified is more than one, the number of

conicalSensors must equal the number of parents and each parent gets one conicalSensor.

 conicalSensor

2-81

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the conical
sensor to 20, 35, and 10 degrees, respectively.

Name — conicalSensor name
"conicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

conicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one conicalSensor is added, specify Name as a string scalar or a character vector.
• If multiple conicalSensors are added, specify Name as a string scalar, character vector, string

vector or a cell array of character vectors. All conicalSensors added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of conicalSensors being added.
Each conicalSensor is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID of the conicalSensors added by the conicalSensor object function.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

• One conicalSensor — MountingLocation is a three-element vector.
• Multiple conicalSensors — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified conicalSensors.
When specified as a matrix, MountingLocation must contain three rows and the same number
of columns as the conicalSensors. The columns correspond to the mounting location of each
specified conicalSensor and the rows correspond to the mounting location coordinates in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

2 Functions

2-82

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One conicalSensor — MountingAngles is a three-element vector.
• Multiple conicalSensors — MountingAngles can be a three-element vector or a matrix. When
specified as a vector, the same MountingAngless are assigned to all specified conicalSensors.
When specified as a matrix, MountingAngles must contain three rows and the same number of
columns as the conicalSensors. The columns correspond to the mounting angles of each specified
conicalSensor and the rows correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180] | vector

Field of view angle in degrees, specified as a scalar in the range [0, 180] or a vector.

• One conicalSensor — MaxViewAngle must be a scalar.
• Multiple conicalSensor — MaxViewAngle can be a scalar or a vector. When scalar, the same

MaxViewAngle is assigned to all specified conicalSensors. When vector, the length of
MaxViewAngle must equal the number of conicalSensors to be specified. Each element of
MaxViewAngle is assigned to the specified corresponding conicalSensor.

When AutoSimulate of the satellite scenario is false, you can modify MaxViewAngle while the
SimulationStatus is NotStarted or InProgress.
Data Types: double

Output Arguments
sensor — Conical sensor
row vector object

Conical sensors attached to parent, returned as a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access | gimbal | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”

 conicalSensor

2-83

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-84

satelliteScenarioViewer
Package: matlabshared.satellitescenario

Create viewer for satellite scenario

Syntax
satelliteScenarioViewer(scenario)
satelliteScenarioViewer(scenario,Name,Value)
v = satelliteScenarioViewer(scenario)

Description
satelliteScenarioViewer(scenario) creates a 3-D or 2-D satellite scenario viewer for the
specified satellite scenario. Satellite Scenario Viewer is a 3-D map display and requires hardware
graphics support for WebGL™.

satelliteScenarioViewer(scenario,Name,Value) creates a new viewer using one or more
name-value arguments. For example, 'Basemap', 'topographic' uses topographic imagery
provided by Esri®.

v = satelliteScenarioViewer(scenario) returns the handle to the satellite scenario viewer.

Examples

Create and Visualize Satellite Scenario

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite and ground station to the scenario. Additionally, add an access between the satellite
and the ground station.

sat = satellite(sc,"eccentricOrbitSatellite.tle");
gs = groundStation(sc);
access(sat,gs);

Visualize the scenario at the start time defined in the TLE file by using the Satellite Scenario Viewer.

satelliteScenarioViewer(sc);

 satelliteScenarioViewer

2-85

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Basemap','topographic' uses topographic imagery provided by Esri.

Name — Name of viewer window
'Satellite Scenario Viewer' (default) | string scalar | character vector

Name of the viewer window, specified as a comma-separated pair consisting of 'Name' and either a
string scalar or a character vector.
Data Types: char | string

Position — Viewer window position
center of the screen (default) | row vector of four elements

2 Functions

2-86

Size and location of the satellite scenario window in pixels, specified as a row vector of four elements.
The elements of the vector are [left bottom width height]. In the default case, width and
height are 800 and 600 pixels, respectively.

Basemap — Map on which scenario is visualized
'satellite' (default) | 'topographic' | 'streets' | 'streets-light' | 'streets-dark' |
'darkwater' | 'grayland' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map on which scenario is visualized, specified as a comma-separated pair consisting of 'Basemap'
and one of the values specified in this table:

'satellite'

Full global basemap
composed of high-
resolution satellite
imagery.

Hosted by Esri.

'streets'

General-purpose road
map that emphasizes
accurate, legible styling
of roads and transit
networks.

Hosted by Esri.

'topographic'

General-purpose map
with styling to depict
topographic features.

Hosted by Esri.

'streets-dark'

Map designed to
provide geographic
context while
highlighting user data
on a dark background.

Hosted by Esri.

 satelliteScenarioViewer

2-87

'landcover'

Map that combines
satellite-derived land
cover data, shaded
relief, and ocean-bottom
relief. The light, natural
palette is suitable for
thematic and reference
maps.

Created using Natural
Earth.

'streets-light'

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green and
arid lowlands are
brown.

Created using Natural
Earth.

'grayterrain'

Terrain map in shades
of gray. Shaded relief
emphasizes both high
mountains and micro-
terrain found in
lowlands.

Created using Natural
Earth.

'bluegreen'

Two-tone, land-ocean
map with light green
land areas and light
blue water areas.

Created using Natural
Earth.

'grayland'

Two-tone, land-ocean
map with gray land
areas and white water
areas.

Created using Natural
Earth.

2 Functions

2-88

'darkwater'

Two-tone, land-ocean
map with light gray land
areas and dark gray
water areas. This
basemap is installed
with MATLAB.

Created using Natural
Earth.

All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included
with MATLAB and Satellite Communications Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using
Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are
not available for download.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by The MathWorks®.
Data Types: char | string

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of the animation for the input scenario used by the play function, specified as a comma-
separated pair consisting of 'PlaybackSpeedMultiplier' and a positive scalar.

CameraReferenceFrame — Reference frame of camera
'ECEF' (default) | 'Inertial'

Reference frame of the camera, specified as a comma-separated pair consisting of
'CameraReferenceFrame' and one of these values:

• 'ECEF' — Earth-Centered Earth-Fixed camera.
• 'Inertial' — Inertially fixed camera.

When you specify 'Inertial', the globe rotates with respect to the camera. When you specify
'ECEF', the camera rotates with the globe.

Dependencies

To enable this name-value argument, set to Dimension to '3-D'.

CurrentTime — Current simulation time
StartTime of satelliteScenario (default) | datetime array

Current simulation time of the viewer, specified as a datetime array. This value changes over time
when the animation is playing.

 satelliteScenarioViewer

2-89

Dependencies

To enable this name-value argument, set AutoSimulate to true.
Data Types: datetime

Dimension — Dimension of viewer
'3-D' (default) | '2-D'

Dimension of the viewer, specified as a comma-separated pair consisting of 'Dimension' and either
'3-D' or '2-D'.

ShowDetails — Flag to show graphical details
true or 1 (default) | false or 0

Flag to show the graphical details for Satellite Scenario Viewer, specified as one of these numeric or
logical values.

• 1 (true) — Show all graphical details of satellites and ground stations except those explicitly
hidden.

• 0 (false) — Hide all graphical details of satellites and the ground stations, including orbits, fields
of view, labels, and the ground track. Even when ShowDetails is false, clicking or pausing on
satellites and ground stations reveals hidden graphical details or labels, respectively.

Data Types: logical

Output Arguments
v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, returned as a satelliteScenarioViewer object.

To specify, query, or visualize satellite scenario viewer details, use these functions:

campos Set or query camera position.
camheight Set or query camera height.
camheading Set or query camera heading angle.
camroll Set or query camera roll angle.
campitch Set or query camera pitch angle.
camtarget Target an object with the camera.
hideAll Hide all visualizations and animations in the

Satellite Viewer.
showAll Show all visualizations and animations in the

Satellite Viewer.

Note When AutoSimulate property of the satellite scenario is true, the timeline and the playback
widgets are available. You can use the play function to access the widgets during simulation.

2 Functions

2-90

Tips
• To pan the viewer window without rotation, use Shift + left click + drag.

See Also
Functions
show | play | hide | access | groundStation | satellite

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Comparison of Orbit Propagators”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 satelliteScenarioViewer

2-91

play
Package: matlabshared.satellitescenario

Play satellite scenario simulation results on viewer

Syntax
play(scenario)
play(viewer)
play(scenario,Name,Value)

Description
play(scenario) plays simulation results of the satellite scenario, scenario. When AutoSimulate
of the satellite scenario is true, the simulation is automatically performed from StartTime to
StopTime using a step size specified by the SampleTime, and the results are played on the viewer.
Otherwise, the results calculated up to the SimulationTime are played on the viewer. Calling the
play function enables the widgets on the viewers.

play(viewer) plays the satellite scenario simulation results on the Satellite Scenario Viewer
specified by v.

play(scenario,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can set the speed of animation to 40 times the real time speed, using
'PlaybackSpeedMultiplier',40.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

2 Functions

2-92

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

 play

2-93

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

viewer — Viewer
scalar satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Viewer playing the simulation results, specified as a scalar satelliteScenarioViewer object, or
an array of satelliteScenarioViewer objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

2 Functions

2-94

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PlaybackSpeedMultiplier',30 plays the animation 30 times faster than real time.

Viewer — Satellite scenario viewer
all viewers associated with satelliteScenarioViewer (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, or an array of satelliteScenarioViewer objects.

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of animation relative to real time, specified as a positive scalar.

See Also
Objects
satelliteScenario

Functions
hide | show | satellite | access | groundStation | restart

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations Using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 play

2-95

pointAt
Package: matlabshared.satellitescenario

Specify the target at which the satellite is pointed

Syntax
pointAt(sat,coordinates)
pointAt(sat,target)
pointAt(sat,'nadir')
pointAt(sat,attitudetable)
pointAt(sat,attitudetable,Name=Value)
pointAt(sat,attitudetimeseries)
pointAt(sat,attitudetimeseries,Name=Value)

pointAt(gimbal,'none')
pointAt(gimbal,coordinates)
pointAt(gimbal,target)
pointAt(gimbal,'nadir')
pointAt(gimbal,steeringtable)
pointAt(gimbal,steeringtimeseries)

Description
Satellite Object

pointAt(sat,coordinates) steers the satellites in the vector sat towards the geographical
coordinates [latitude; longitude; altitude] specified by coordinates.

pointAt(sat,target) steers the satellites specified by sat towards the specified target. The
input target can be another satellite or ground station.

pointAt(sat,'nadir') steers the satellites specified by the row vector sat towards the nadir
direction.

pointAt(sat,attitudetable) sets the attitude of the satellite sat such that it follows the
attitudes provided in attitudetable, which is a MATLAB timetable object.

pointAt(sat,attitudetable,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous attitudetable syntax. For example,
to interpret the provided attitude values as the rotation from the Geocentric Celestial Reference
Frame (GCRF) to the body frame, set CoordinateFrame to inertial.

pointAt(sat,attitudetimeseries) sets the attitudes of the satellite sat such that it follows the
attitude provided in attitudetimeseries, which is a MATLAB timeseries object.

pointAt(sat,attitudetimeseries,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous attitudetimeseries syntax.
For example, to interpret the provided attitude values as the rotation from the GCRF to the body
frame, set CoordinateFrame to inertial.

2 Functions

2-96

Gimbal Object

pointAt(gimbal,'none') sets the gimbal angles (gimbal azimuth and gimbal elevation) of the
gimbals in the vector gimbal to zero. This is the default pointing.

pointAt(gimbal,coordinates) steers the gimbals in the vector gimbal towards the
geographical coordinates [latitude; longitude; altitude] specified by coordinates.

pointAt(gimbal,target) steers the gimbals in the vector gimbal towards the specified target.

pointAt(gimbal,'nadir') steers the gimbals specified by the row vector gimbal towards the
nadir direction of their parents, namely, the parent's latitude, longitude, and 0 m altitude.

pointAt(gimbal,steeringtable) sets the orientation of the gimbals to align with the azimuth
and elevation angles provided in steeringtable, which is a MATLAB timetable object.

pointAt(gimbal,steeringtimeseries) sets the orientation of the gimbals to align with the
azimuth and elevation angles provided in steeringtimeseries, which is MATLAB timeseries
object.

Examples

Steer Ground Station Gimbal to Point At Satellite

Create a satellite scenario object.

startTime = datetime(2021,6,10); % 10 June 2021, 12:00 AM UTC
stopTime = datetime(2021,6,11); % 11 June 2021, 12:00 AM UTC
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a ground station to the scenario.

latitude = 42.3501; % degrees
longitude = -71.3504; % degrees
gs = groundStation(sc, latitude, longitude);

Add a gimbal to the ground station.

g = gimbal(gs,"MountingLocation",[0; 0; -1],"MountingAngles",[0; 180; 0]);

Add a conical sensor to the gimbal.

c = conicalSensor(g,"MountingLocation",[0; 0; 0.5]);

 pointAt

2-97

Point the gimbal at the satellite.

pointAt(g,sat);

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

Play the scenario.

play(sc);

Set the ground station as the camera target.

camtarget(v,gs);

2 Functions

2-98

Visualize the field of view of the conical sensor and observe the change in orientation of the conical
sensor.

fieldOfView(c);

 pointAt

2-99

Input Arguments
sat — Satellite
scalar | vector

Satellite object, specified as either a scalar or a vector.

gimbal — Gimbal
scalar | vector

Gimbal object, specified as either a scalar or a vector.

coordinates — Geographical coordinates of the satellite or gimbal target
three-element vector | 2-D array

Geographical coordinates of the satellite or gimbal target, specified as a three-element vector or a 2-
D array.

• Three-element vector — The elements correspond to the latitude, longitude, and altitude, in that
order, and all satellites or gimbals are steered to point at this location.

• 2-D array — The number of rows must equal 3 and the number of columns must equal the number
of satellites in satellite or the number of gimbals in gimbal. The rows correspond to the
latitude, longitude, and altitude, in that order, and each column represents the pointing
coordinates of the corresponding satellite in the vector satellite or gimbal in the vector
gimbal. The latitudes and longitudes are specified in degrees and the altitudes are specified in
meters, representing the height above the surface of the Earth.

2 Functions

2-100

target — Target
scalar | vector

Target at which input satellite or gimbal is pointed, specified as a scalar or a vector. The input
target can be another satellite or a ground station.

• target is scalar — All satellites or gimbals point to the specified target.
• target is vector — The length of target must equal the number of satellites in sat or the

number of gimbals in gimbal. Each element in target represents the pointing target of a
satellite in sat or a gimbal in gimbal.

attitudetable — MATLAB timetable
timetable object

MATLAB timetable with exactly one monotonically increasing column of rowTimes (datetime or
duration).

• If sat contains a single satellite, the table must contain one data column of scalar-first
quaternions [1-by-4], or ZYX Euler angles [1-by-3].

• If sat is an array of satellites, each data row must contain either:

• Multiple columns, where each column contains data for an individual satellite over time.
• One column of 2-D data, where the length of one dimension must equal 3 or 4, depending on

whether Euler angles or quaternions are used, and the remaining dimension must have length
equal to the number of satellites in sat.

• One column of 3-D data, where the length of one dimension must equal 3 or 4, depending on
whether Euler angles or quaternions are used, one dimension is a singleton, and the remaining
dimension must have length equal to the number of satellites in sat.

Euler angles represent passive, intrinsic rotations in degrees, using the ZYX rotation order. If the
provided rowTimes are of type duration, time values are measured relative to the current scenario
StartTime property.

The function assumes that satellite attitudes represent the transformation from the GCRF to the body
frame, unless a CoordinateFrame name-value argument is provided. For scenario timesteps outside
of the time range of attitudetable, the function uses nadir by default unless a name-value
argument ExtrapolationMethod is provided.

attitudetimeseries — MATLAB timeseries
timeseries object

MATLAB timeseries timeseries containing scalar-first quaternions or ZYX Euler angles.

• If the Data property of timeseries has two dimensions, the length of one dimension must equal
3 or 4, depending on whether Euler angles or quaternions are used, and the other dimension must
align with the orientation of the time vector.

• If sat is an array of satellites, the Data property of timeseries must have three dimensions
where the length of one dimension must equal 3 or 4, depending on whether Euler angles or
quaternions are used, either the first or the last dimension must align with the orientation of the
time vector, and the remaining dimension must align with the number of satellites in sat.

 pointAt

2-101

Euler angles represent passive, intrinsic rotations in degrees, using the ZYX rotation order. When
timeseries.TimeInfo.StartDate is empty, time values are measured relative to the current
scenario StartTime property.

The function assumes that satellite attitudes represent the transformation from the Geocentric
Celestial Reference Frame (GCRF) to the body frame, unless a CoordinateFrame name-value
argument is provided. For scenario timesteps outside of the time range of attitudetable, the
function uses nadir by default unless a name-value argument ExtrapolationMethod is provided.

steeringtable — MATLAB timetable
timetable object

MATLAB timetable with exactly one monotonically increasing column of rowTimes (datetime or
duration).

• If gimbal contains a single gimbal, the table must contain one data column of azimuth and
elevation angles in degrees [1-by-2].

• If gimbal is an array of gimbals, each data row must contain either:

• Multiple columns, where each column contains data for an individual gimbal over time.
• One column of 2-D data, where the length of one dimension must equal 2 and the remaining

dimension must have length equal to the number of gimbals in gimbal.
• One column of 3-D data, where the length of one dimension must equal 2, one dimension is a

singleton, and the remaining dimension must have length equal to the number of gimbals in
gimbal.

Specify the azimuth and elevation angles in degrees. If the provided rowTimes are of type
duration, time values are measured relative to the current scenario StartTime property.

steeringtimeseries — MATLAB timeseries
timeseries object

MATLAB timeseries timeseries containing azimuth and elevation in degrees [1-by-2].

• If the Data property of timeseries has two dimensions, the length of one dimension must equal
2 and the other dimension must align with the orientation of the time vector.

• If gimbal is an array of gimbals, the Data property of timeseries must have three dimensions
where:

• The length of one dimension must equal 2.
• Either the first or the last dimension must align with the orientation of the time vector.
• The remaining dimension must align with the number of gimbals in gimbal.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property.

Name-Value argument Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2 Functions

2-102

Example: pointAt(sat,attTT,CoordinateFrame="inertial") interprets the provided attitude
values as the rotation from the Geocentric Celestial Reference Frame (GCRF) to the body frame.

CoordinateFrame — Coordinate frame of custom attitude inputs
inertial (default) | ecef | ned

Coordinate frame of custom attitude inputs, specified as one of these options.

• inertial — Interprets the provided attitude values as the rotation from the GCRF to the body
frame.

• ecef — Interprets the provided attitude values as the rotation from the Earth-Centered-Earth-
Fixed (ECEF) frame to the body frame.

• ned — Interprets the provided attitude values as the rotation from the North-East-Down (NED)
frame to the body frame.

Data Types: char | string

ExtrapolationMethod — Default behavior for attitude
nadir (default) | fixed

Default behavior for attitude, specified as:

• nadir — Sets the attitude of the satellite sat such that the yaw axis points in the nadir direction.
• fixed — Keeps the attitude constant with respect to the GCRF at the closest time value for which

data is provided in the custom attitude data.

The scenario uses this setting for scenario time steps that lie outside the provided custom attitude
time range. If you do not provide ExtrapolationMethod, the function returns a warning when the
scenario time is out of range of the custom attitude time range.
Data Types: char | string

Format — Format of attitude data provided
quaternion (default) | euler

Format of attitude data provided, specified as one of these options.

• quaternion — Interprets the provided attitude values as scalar-first quaternions. Quaternions
represent passive rotations from CoordinateFrame to the body frame.

• euler — Interprets the provided attitude values as Euler angles, in degrees. Euler angles
represent passive, intrinsic rotations from CoordinateFrame to the body frame using the ZYX
rotation order and are provided in that order.

Data Types: char | string

Note When AutoSimulate property of the satellite scenario is false, the pointAt function can
be called as long as the SimulationStatus is NotStarted or InProgress.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

 pointAt

2-103

Functions
show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-104

camroll
Package: matlabshared.satellitescenario

Set or get roll angle of camera for satellite scenario viewer

Syntax
camroll(viewer,roll)
outRoll = camroll(viewer, ___)

Description
camroll(viewer,roll) sets the roll angle of the camera for the satellite scenario viewer. Setting
the roll angle rotates the camera around its x-axis.

outRoll = camroll(viewer, ___) returns the roll angle of the camera. If the second input is
roll, then the function sets the output equal to the input roll.

Examples

Set Camera Roll Angle of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 camroll

2-105

Set the roll angle of the camera in the Satellite Scenario Viewer to 60 degrees.

roll = 60; % degrees
camroll(v,roll);

2 Functions

2-106

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.1

roll — Roll angle of camera
scalar in the range [–360, 360]

Roll angle of the camera, specified as a scalar in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

1 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks®.

 camroll

2-107

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campitch | campos | hideAll | camtarget | camheight | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-108

campitch
Package: matlabshared.satellitescenario

Set or get pitch angle of camera for satellite scenario viewer

Syntax
campitch(viewer,pitch)
outPitch = campitch(viewer, ___)

Description
campitch(viewer,pitch) sets the pitch angle of the camera for the specified satellite scenario
viewer. Setting the pitch angle tilts the camera up or down as shown in this figure..

outPitch = campitch(viewer, ___) returns the pitch angle of the camera. If the second input is
pitch, then the function sets the output equal to the input pitch.

Examples

Set Camera Pitch Angle of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 campitch

2-109

Set the pitch angle of the camera in the Satellite Scenario Viewer to -60 degrees.

pitch = -60; % degrees
campitch(v,pitch);

2 Functions

2-110

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.2

pitch — Pitch angle of camera
scalar the in the range [–90, 90]

Pitch angle of the camera, specified as a scalar the in the range [–90, 90] degrees. By default, the
pitch angle is –90 degrees, which means that camera points directly toward the surface of the globe.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

2 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 campitch

2-111

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-112

campos
Package: matlabshared.satellitescenario

Set or get position of camera for satellite scenario viewer

Syntax
campos(viewer,lat,lon)
campos(viewer,lat,lon,height)
campos(viewer)
[latOut,lonOut,heightOut] = campos(___)

Description
campos(viewer,lat,lon) sets the latitude and longitude of the camera for the specified satellite
scenario viewer.

campos(viewer,lat,lon,height) sets the latitude, longitude, and ellipsoidal height of the
camera. If you want to set only the height of the camera, use the camheight function instead.

campos(viewer) displays the latitude, longitude, and ellipsoidal height of the camera as a three-
element vector.

[latOut,lonOut,heightOut] = campos(___) sets the position and then returns the latitude,
longitude, and height of the camera. Specify any input argument combinations from previous
syntaxes.

Examples

Reposition Camera of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 campos

2-113

Set the latitude and longitude of the camera in the Satellite Scenario Viewer to -30 degrees and the
height to 30000 km.

latitude = -30; % degrees
longitude = -30; % degrees
height = 30000000; % meters
campos(v,latitude,longitude,height)

2 Functions

2-114

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.3

lat — Geodetic latitude of camera
0 (default) | scalar in the range [-90, 90].

Geodetic latitude of the camera, specified as a scalar in the range [–90, 90] degrees.

lon — Geodetic longitude of camera
0 (default) | scalar in the range [-360, 360].

Geodetic longitude of the camera, specified as a scalar in the range [–360, 360].

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid.

3 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 campos

2-115

If you specify the height so that the camera is level with or below the surface of the Earth, then the
campos function sets the height to a value one meter above the surface.

Output Arguments
latOut — Geodetic latitude of camera
numeric scalar

Geodetic latitude of the camera, returned as a numeric scalar in degrees.

lonOut — Geodetic longitude of camera
numeric scalar

Geodetic longitude of the camera, returned as a numeric scalar in degrees.

heightOut — Ellipsoidal height of camera
numeric scalar

Ellipsoidal height of the camera, returned as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | hideAll | camtarget | camheight | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-116

camheading
Package: matlabshared.satellitescenario

Set or get heading angle of camera for satellite scenario satellite scenario viewer

Syntax
camheading(viewer,heading)
outHeading = camheading(viewer, ___)

Description
camheading(viewer,heading) sets the heading angle of the camera for the specified satellite
scenario viewer. Setting the heading angle shifts the camera left or right about its z - axis.

outHeading = camheading(viewer, ___) returns the heading angle of the camera. If the second
input is heading, then the function sets the output equal to the input pitch.

Examples

Set Camera Heading Angle of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add a ground station to the scenario.

latitude = 42.3001; % degrees
longitude = -71.3504; % degrees
groundStation(sc, latitude+0.05, longitude);

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 camheading

2-117

Set the height of the camera in the Satellite Scenario Viewer to 50 meters.

height = 50; % meters
campos(v,latitude,longitude,height);
pause(2);

Set the pitch angle of the camera in the Satellite Scenario Viewer to 0 degrees.

pitch = 0;
campitch(v,pitch);
pause(2);

2 Functions

2-118

Set the heading angle of the camera in the Satellite Scenario Viewer to 20 degrees.

heading = 20; % degrees
camheading(v,heading);

 camheading

2-119

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.4

heading — Heading angle of camera
360 (default) | scalar in the range [–360, 360]

Heading angle of the camera, specified as a scalar value in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

4 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-120

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheight |
camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 camheading

2-121

camheight
Package: matlabshared.satellitescenario

Set or get height of camera for satellite scenario viewer

Syntax
camheight(viewer,height)
heightOut = camheight(viewer, ___)

Description
camheight(viewer,height) sets the ellipsoidal height of the camera for the specified satellite
scenario viewer.

heightOut = camheight(viewer, ___) returns the ellipsoidal height of the camera. If the
second input is height, then the function sets the output equal to the input height.

Examples

Retrieve Camera Height of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2 Functions

2-122

Retrieve the height of the camera in the Satellite Scenario Viewer.

height = camheight(v)

height = 15000000

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.5

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
camheight function sets the height to a value one meter above the surface.

5 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 camheight

2-123

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-124

camtarget
Package: matlabshared.satellitescenario

Set camera target for satellite scenario viewer

Syntax
camtarget(viewer,target)

Description
camtarget(viewer,target) focuses the camera on the input satellite or ground station. The
camera follows the object and can be unlocked by calling camtarget on another satellite or ground
station or by double-clicking anywhere in the map.

Examples

Set Camera Target to Satellite

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario;

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 camtarget

2-125

Play the scenario in the viewer.

play(sc,"Viewer",v);

Set the camera target to the satellite.

camtarget(v,sat);

2 Functions

2-126

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.6

target — Target of camera
Satellite object | GroundStation object

Target of the camera, specified as a scalar Satellite or GroundStation object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camheight | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”

6 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 camtarget

2-127

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-128

hideAll
Package: matlabshared.satellitescenario

Hide all graphics in satellite scenario viewer

Syntax
hideAll(viewer)

Description
hideAll(viewer) hides all graphics in the specified satellite scenario viewer.

Examples

Hide All Graphics from Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add satellites to the scenario.

tleFile = "leoSatelliteConstellation.tle";
sats = satellite(sc,tleFile);

Add a hundred ground stations to the scenario.

latitudes = linspace(-90,90,100); % degrees
longitudes = linspace(-180,180,100); % degrees
gss = groundStation(sc,latitudes,longitudes);

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 hideAll

2-129

Hide all the graphics from the viewer.

hideAll(v);

2 Functions

2-130

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.7

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget |
access | groundStation | conicalSensor | showAll

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”
“Comparison of Orbit Propagators”

7 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 hideAll

2-131

Introduced in R2021a

2 Functions

2-132

showAll
Package: matlabshared.satellitescenario

Show all graphics in viewer

Syntax
showAll(viewer)

Description
showAll(viewer) shows all graphics in the specified satellite scenario viewer.

Examples

Show All Hidden Satellite Scenario Objects

Create a satellite scenario object.

sc = satelliteScenario;

Set the "AutoShow" property of the scenario to false.

sc.AutoShow = false;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 showAll

2-133

Add a constellation of satellites to the scenario.

tleFile = "leoSatelliteConstellation.tle";
sat = satellite(sc,tleFile);

Add a ground station to the scenario.

gs = groundStation(sc);

Visualize the satellite scenario objects using the Satellite Scenario Viewer.

showAll(v);

2 Functions

2-134

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.8

See Also
Objects
satelliteScenario | access | groundStation | satelliteScenarioViewer |
conicalSensor

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”
“Comparison of Orbit Propagators”

8 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 showAll

2-135

Introduced in R2021a

2 Functions

2-136

accessPercentage
Package: matlabshared.satellitescenario

Percentage of time when access exists between first and last node defining the access analysis

Syntax
acpercent = accessPercentage(ac)

Description
acpercent = accessPercentage(ac) returns the percentages of time from start time to stop
time of the satellite scenario when access exists between the first and last node of each access object
in the input vector.

Examples

Calculate Access Percentages Between Ground Station and Satellites

Create a satellite scenario object.

startTime = datetime(2020,5,1,11,36,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a ground station to the scenario.

gs = groundStation(sc);

Add satellites to the scenario.

semiMajorAxis = [10000000 10000000]; % meters
eccentricity = [0 0];
inclination = [0 30]; % degrees
rightAscensionOfAscendingNode = [0 0]; % degrees
argumentOfPeriapsis = [0 0]; % degrees
trueAnomaly = [0 10]; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add access analysis between the ground station and each satellite.

access(gs,sat(1));
access(gs,sat(2));

Obtain the access percentage between the ground station and each satellite.

ac = gs.Accesses;
acPercent = accessPercentage(ac)

 accessPercentage

2-137

acPercent = 2×1

 15.0000
 14.9306

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

Outputs Arguments
acpercent — Access percentage
row vector of nonnegative numbers

Access percentage, returned as a row vector of nonnegative numbers.

Note When AutoSimulate of the satellite scenario is true, the percentage corresponds to the
duration between StartTime and StopTime. When it is false, the percentage corresponds to the
duration between StartTime and SimulationTime.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-138

linkPercentage
Package: satcom.satellitescenario

Percentage of time when link between first and last node in link analysis is closed

Syntax
lp = linkPercentage(lnk)

Description
lp = linkPercentage(lnk) returns the percentages of time from start time to stop time of the
satellite scenario when link between the first and last node is closed.

Examples

Calculate Uplink Percentage Between Ground Station and Satellite

Create a satellite scenario object.

startTime = datetime(2020,11,13,7,25,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a receiver to the satellite.

rx = receiver(sat);

Add a ground station to the scenario.

latitude = 0; % degrees
longitude = 30; % degrees
gs = groundStation(sc,latitude,longitude);

Add a transmitter to the ground station.

tx = transmitter(gs,"MountingAngles",[0; 180; 0]);

Create an uplink.

 linkPercentage

2-139

lnk = link(tx,rx);

Calculate the link percentage of the uplink.

linkpercent = linkPercentage(lnk)

linkpercent = 0

Input Arguments
lnk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

Outputs Arguments
lp — Link percentage
vector of positive numbers | scalar

Link percentage, returned as a vector of positive numbers or scalar.

Note When AutoSimulate of the satellite scenario is true, the percentage corresponds to the
duration between StartTime and StopTime. When it is false, the percentage corresponds to the
duration between StartTime and SimulationTime.

See Also
Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | ebno | linkStatus | linkIntervals | groundStation

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-140

linkStatus
Package: satcom.satellitescenario

Status of link closure between first and last node

Syntax
s = linkStatus(lnk)
s = linkStatus(lnk,timeIn)
[s,timeOut] = linkStatus(___)

Description
s = linkStatus(lnk) returns a matrix of logicals representing the link closure status history s of
each link in the vector link. The rows of the matrix correspond to the link objects in link and the
columns correspond to the time sample.

s = linkStatus(lnk,timeIn) returns a column vector of status s of each link in the vector link
at the specified datetime timeIn. Each element of s corresponds to a link in link. If no time zone is
specified in timeIn, the time zone is assumed to be UTC.

[s,timeOut] = linkStatus(___) returns the link closure status and the corresponding times in
Universal Time Coordinated (UTC).

Examples

Obtain Closed Downlink Status History

Create a satellite scenario object.

startTime = datetime(2020,10,13,5,30,0);
stopTime = datetime(2020,10,13,5,45,0);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a transmitter to the satellite.

tx = transmitter(sat);

 linkStatus

2-141

Add a ground station to the scenario.

latitude = 0; % degrees
longitude = 30; % degrees
gs = groundStation(sc,latitude,longitude);

Add a receiver to the ground station.

rx = receiver(gs,"MountingAngles",[0; 180; 0]);

Create a downlink.

lnk = link(tx,rx);

Obtain the link status history of the closed downlink.

s = linkStatus(lnk)

s = 1x16 logical array

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input Arguments
lnk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeIn, the time zone is assumed to be Universal Time Coordinated (UTC).

Outputs Arguments
s — Link closure status
matrix of logical values

Link closure status, returned as a matrix of logical values representing the link closure status history
s of each link in the vector link. The rows of the matrix correspond to the link objects in link and
the columns correspond to the time sample. The status at a given instant is 1 (true) if the link
between first and last node is closed. The link between the first and last node is closed when the link
between each individual pair of intermediate adjacent nodes in the Sequence property of the link is
closed.

• For a given pair, the link is considered to be closed when both nodes belong to the same satellite
or ground station.

• Otherwise, the link between the pair is closed if the directionality is from a transmitter to a
receiver and the energy per bit to noise power spectral density ratio (Eb/No) at the receiver is
greater than its RequiredEbNo.

2 Functions

2-142

• Additionally, if a given node is attached to a ground station directly or via a gimbal, the elevation
angle of the adjacent node with respect to the ground station must be greater than or equal to its
MinElevationAngle.

timeOut — Time samples of output link status
scalar | vector

Time samples of output link status, returned as a scalar or a vector. If time history of link status is
returned, timeOut is a row vector.

Note When AutoSimulate of the satellite scenario is true, the link status history from StartTime
to StopTime is returned. When it is false, the link status history from StartTime to
SimulationTime is returned.

See Also
Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | ebno | linkPercentage | linkIntervals

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 linkStatus

2-143

linkIntervals
Package: satcom.satellitescenario

Intervals during which link is closed

Syntax
int = linkIntervals(lnk)

Description
int = linkIntervals(lnk) returns a table of intervals during which the link between the first
node and last node in each link object input vector is closed.

Examples

Obtain Downlink Closed Intervals Between Satellite and Ground Station

Create a satellite scenario object.

startTime = datetime(2020,10,13,7,25,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a transmitter to the satellite.

tx = transmitter(sat);

Add a ground station to the scenario.

latitude = 0; % degrees
longitude = 30; % degrees
gs = groundStation(sc,latitude,longitude);

Add a receiver to the ground station.

rx = receiver(gs,"MountingAngles",[0; 180; 0]);

Create a downlink.

2 Functions

2-144

lnk = link(tx,rx);

Obtain the intervals table of the closed downlink.

intervals = linkIntervals(lnk)

intervals =

 0x8 empty table

Input Arguments
lnk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

Outputs Arguments
int — Intervals during which link is closed
table

Intervals during which the link is closed, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, that define the
link analysis.

• If Source is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with Source.

• If Target is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with the Target. Otherwise, StartOrbit and EndOrbit
are NaN because they are associated with ground stations.

Note When AutoSimulate of the satellite scenario is true, the intervals between StartTime and
StopTime are returned. When it is false, the intervals between StartTime and SimulationTime
are returned.

See Also
Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | linkPercentage | linkStatus | ebno

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

 linkIntervals

2-145

Introduced in R2021a

2 Functions

2-146

aer
Package: matlabshared.satellitescenario

Calculate azimuth angle, elevation angle, and range of another satellite or ground station in NED
frame

Syntax
az = aer(asset,target)
[az,el] = aer(asset,target)
[az,el,range] = aer(asset,target)
[az,el,range,timeOut] = aer(asset,target)
[___] = aer(asset,target,timeIn)
[___] = aer(___ ,coordinateFrame='ned')

Description
az = aer(asset,target) returns a 2-D array of the history of azimuth angles az, between asset
and target belonging to a given satelliteScenario object.

[az,el] = aer(asset,target) returns the history of elevation angles, el, between satellite or
ground station asset and another satellite or ground station target.

[az,el,range] = aer(asset,target) returns row vectors of the history of the range of
Satellite or GroundStation in target with respect to those in asset.

[az,el,range,timeOut] = aer(asset,target) returns the corresponding time in timeOut.

[___] = aer(asset,target,timeIn) returns the outputs at the specified datetime timeIn. az,
el, and range are structured the same way as described in syntaxes with an exception that the size
of the second dimension is fixed at 1, representing the values at the specified time timeIn.

[___] = aer(___ ,coordinateFrame='ned') returns the az, el, range, and timeOut based
on the specified output arguments and the coordinate frame defined by the name-value argument.

Examples

Determine AER of Ground Station

Create a satellite scenario object.

startTime = datetime(2021,4,25); % April 25, 2021, 12:00 AM UTC
stopTime = datetime(2021,4,26); % April 26, 2021, 12:00 AM UTC
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

 aer

2-147

Add a ground station to the scenario using default properties.

gs = groundStation(sc);

Determine the azimuth angle, elevation angle, and range of the ground station with respect to the
satellite at April 25, 2021, 1:26 AM UTC.

time = datetime(2021,4,25,1,26,0);
[azimuth,elevation,range] = aer(sat,gs,time)

azimuth = 15.2962

elevation = -70.3858

range = 1.3442e+07

Input Arguments
asset — First scenario component
scalar | vector

First scenario component, specified as a Satellite, GroundStation, ConicalSensor, Gimbal,
Transmitter, or a Receiver object.

target — Second scenario component
scalar | vector

Second scenario component, specified as a Satellite, GroundStation, ConicalSensor, Gimbal,
Transmitter, or a Receiver object.

timeIn — Time at which output is calculated
datetime

Time at which output is calculated, specified as a datetime. If no time zone is specified in timeIn, the
time zone is assumed to be UTC.

coordinateFrame — Coordinate frame
'ned' (default) | 'body'

Coordinate frame, specified as either 'ned' or 'body'.

• When coordinateFrame is 'ned' — The azimuth angle is defined in the North-East-Down (NED)
frame of (and centered at) asset such that 0 degrees is North, 90 degrees is East, 180 degrees is
South, and 270 degrees is West. The elevation angle is defined in the NED frame of (and centered
at) asset such that 0 degrees implies target is on the North East (NE) plane, 90 degrees implies
target is directly above asset, and -90 degrees implies target is directly below asset.

• When coordinateFrame is 'body' — The azimuth angle is the angle between the projection of
the relative position vector of target on the x-y plane of the body frame of asset, and the x-axis
of asset. The angle is positive for positive (clockwise) rotation about the z-axis of asset. The
elevation angle is the angle between the relative position vector of target on the x-y plane of the
body frame of asset. The angle is positive when the z component of the relative position of
target defined in the body frame of asset is negative.

2 Functions

2-148

Output Arguments
az — Azimuth angles
vector | 2-D array | scalar

Azimuth angles of the target in the local azimuth, elevation, and range (AER) system in degrees,
returned as a vector, 2-D array, or scalar in the range [0,360). Azimuths are measured clockwise from
North. If the timeIn argument is not specified, the vector elements correspond to the time samples
specified by the SampleTime property from the satellite scenario StartTime to StopTime.

• If both asset and target are scalars, az is a row vector where each element represents the
azimuth angle of target with respect to asset in the NED frame of asset at a specified time
sample.

• If asset is a scalar and target is a vector, az is a 2-D array, where each row represents the
azimuth angle of each element in target with respect to asset in the NED frame of asset and
the columns represent the time samples.

• If asset is a vector and target is a scalar, az is a 2-D array, where each row represents the
azimuth angle of target with respect to each element in asset in the NED frame of the element
in asset and the columns represent the time samples.

• If both asset and target are vectors, the length of asset must equal the length of target. The
az is a 2-D array, where each row index corresponds to the index in asset and target, and
represents the azimuth angle of the element at the index in target with respect to the element at
the index in asset in the NED frame of that element in asset. The columns represent the time
samples.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the az history from StartTime to StopTime. Otherwise, it
returns the az history from StartTime to SimulationTime.

el — Elevation angles
vector | 2-D array | scalar

Elevation angles of target in the local AER system in degrees, returned as a vector, 2-D array, or
scalar in the range [0 180]. Elevations are measured with respect to a plane that is perpendicular to
the normal of the surface of the earth. If asset is on the surface of the Earth, then the plane is
tangential to the Earth. If the timeIn argument is not specified, the vector elements correspond to
the time samples specified by the SampleTime property from the satellite scenario StartTime to
StopTime.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the el history from StartTime to StopTime. Otherwise, it
returns the el history from StartTime to SimulationTime.

range — Distances from local origin
vector | 2-D array | scalar

Distances from the local origin in meters, returned as a vector, 2-D array, or a scalar. The range
array is structured the same way as the az and el, described in the above syntaxes.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the range history from StartTime to StopTime. Otherwise,
it returns the range history from StartTime to SimulationTime.

 aer

2-149

timeOut — Time samples between start and stop time of scenario
row vector | scalar

Time samples corresponding to az, el, and range in UTC, returned as a row vector, or a scalar.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the time sample history from StartTime to StopTime.
Otherwise, it returns the time sample history from StartTime to SimulationTime.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | conicalSensor | transmitter | receiver | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-150

accessIntervals
Package: satelliteScenario

Intervals during which access status is true

Syntax
int = accessIntervals(ac)

Description
int = accessIntervals(ac) returns a table of intervals during which the access status
corresponding to each access object in the input vector is true.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2

 accessIntervals

2-151

 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

2 Functions

2-152

Outputs Arguments
int — Intervals during which access is true
table

Intervals during which access is true, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, defining the
access analysis.

• If Source is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Source.

• If Target is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Target. Otherwise,
StartOrbit and EndOrbit are NaN because they are associated with ground stations.

Note When AutoSimulate of the satellite scenario is true, the intervals between StartTime and
StopTime are returned. When it is false, the intervals between StartTime and SimulationTime
are returned.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 accessIntervals

2-153

orbitalElements
Package: matlabshared.satellitescenario

Orbital elements of satellites in scenario

Syntax
elements = orbitalElements(sat)

Description
elements = orbitalElements(sat) returns the orbital elements of the specified satellite sat.

Examples

Retrieve Orbital Elements of Satellite

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat1 = satellite(sc,tleFile);

Retrieve the orbital elements of sat1.

elements1 = orbitalElements(sat1)

elements1 = struct with fields:
 MeanMotion: 1.4544e-04
 Eccentricity: 0.7415
 Inclination: 60.0000
 RightAscensionOfAscendingNode: 30.0000
 ArgumentOfPeriapsis: 280
 MeanAnomaly: 289.4697
 Period: 43200
 Epoch: 05-May-2020 13:51:55
 BStar: 0

Add a satellite from Keplerian elements to the scenario.

semiMajorAxis = 6878137; % meters
eccentricity = 0;
inclination = 20; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat2 = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...

2 Functions

2-154

 argumentOfPeriapsis,trueAnomaly, ...
 "OrbitPropagator","two-body-keplerian", ...
 "Name","Sat2");

Retrieve the orbital elements of sat2.

elements2 = orbitalElements(sat2)

elements2 = struct with fields:
 SemiMajorAxis: 6878137
 Eccentricity: 0
 Inclination: 20
 RightAscensionOfAscendingNode: 0
 ArgumentOfPeriapsis: 0
 TrueAnomaly: 0
 Period: 5.6770e+03

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Output Arguments
elements — Orbital elements
structure

Orbital elements of the input sat, returned as a structure. The fields of the structure depend on the
orbit propagator you specify using the OrbitPropagator property of the satelliteScenario object.

For more information on orbital elements, see “Orbital Elements”.

Two-Body Keplerian

The two-body-keplerian orbit propagator returns these fields.

• SemiMajorAxis, in meters
• Eccentricity
• Inclination, in degrees
• RightAscensionOfAscendingNode, in degrees
• ArgumentOfPeriapsis, in degrees
• TrueAnomaly, in degrees
• Period, in seconds

SGP4 and SDP4

The sgp4 and sdp4 orbit propagators returns these fields.

• MeanMotion, in degrees/second

 orbitalElements

2-155

• Eccentricity
• Inclination, in degrees
• RightAscensionOfAscendingNode, in degrees
• ArgumentOfPeriapsis, in degrees
• MeanAnomaly, in degrees
• Epoch
• BStar, in 1/EarthRadius
• Period, in seconds

The orbital elements represent the mean values at Epoch.

Ephemeris

The ephemeris propagator returns these fields.

• EphemerisStartTime
• EphemerisStopTime
• PositionTimeTable
• VelocityTimeTable

GPS

The gps propagator returns these fields.

• PRN
• SatelliteHealth
• GPSWeekNumber
• GPSTimeOfApplicability, in seconds
• SemiMajorAxis, in meters
• Eccentricity
• Inclination, in degrees
• GeographicLongitudeOfOrbitalPlane, in degrees
• RateOfRightAscension, in degrees/second
• ArgumentOfPerigee, in degrees
• MeanAnomaly, in degrees
• Period, in seconds

The orbital elements are derived from the SEM almanac file and defined in the Earth-Centered-Earth-
Fixed (ECEF) frame.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

2 Functions

2-156

Functions
access | groundStation | conicalSensor | transmitter | receiver | show | play |
satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 orbitalElements

2-157

accessStatus
Package: matlabshared.satellitescenario

Status of access between first and last node defining access analysis

Syntax
s = accessStatus(ac)
s = accessStatus(ac,timeIn)
[s,timeOut] = accessStatus(___)

Description
s = accessStatus(ac) returns a matrix s of the access status history between the first and last
node corresponding to each Access object in the input vector ac.

s = accessStatus(ac,timeIn) returns the status of each access analysis object at the specified
datetime in timeIn. Each element of s corresponds to an access object in ac.

[s,timeOut] = accessStatus(___) returns the status of each access analysis object and the
corresponding datetime in Universal Time Coordinated (UTC).

Examples

Obtain Access Status between Satellite and Ground Station

Create a satellite scenario object.

startTime = datetime(2021,4,30); % 30 April 2021, 12:00 AM UTC
stopTime = datetime(2021,5,1); % 1 May 2021, 12:00 AM UTC
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between the satellite and the ground station.

2 Functions

2-158

ac = access(sat,gs);

Obtain the access status at 30 April 2021, 5:34 PM UTC.

time = datetime(2021,4,30,17,34,0);
s = accessStatus(ac,time)

s = logical
 0

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeIn, the time zone is assumed to be Universal Time Coordinated (UTC).

Outputs Arguments
s — Access analysis status
column vector | matrix

Access analysis status, returned as a column vector or a matrix. If timeIn is specified, s is a column
vector. Otherwise, the output is a matrix. The rows of the matrix correspond to the access object in
ac, and the columns correspond to the time sample. The status at a given instant is 1 (true) if access
exists between each pair of adjacent nodes defined by Sequence. For example, in a given pair, say
defined by node1 and node2, node1 has access to node2 and vice versa:

• If a node is a satellite, then the satellite has access to the adjacent node if both nodes are in line of
sight of each other.

• If a node is a ground station, then the ground station has access to the adjacent node if the
elevation angle of the node with respect to the ground station is greater than or equal to the
MinElevationAngle property of GroundStation.

• If a node is a conical sensor, then the conical sensor has access to the adjacent node if the latter is
in the field of view of the former. If the conical sensor is attached to a ground station directly or
via a gimbal, then the elevation angle of the adjacent node with respect to the ground station must
be greater than or equal to the MinElevationAngle property of GroundStation.

timeOut — Time samples of output access status
scalar | vector

Time samples of the output access status, returned as a scalar or vector. If the time history of the
access status is returned, timeOut is a row vector.

 accessStatus

2-159

Note When AutoSimulate of the satellite scenario is true, the access status history from
StartTime to StopTime is returned. When it is false, the access status history from StartTime to
SimulationTime is returned.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-160

states
Package: matlabshared.satellitescenario

Obtain position and velocity of satellite

Syntax
pos = states(sat)
[pos,velocity] = states(sat)
[___] = states(sat,timeIn)
[___] = states(___ ,'CoordinateFrame',C)
[pos,velocity,timeOut] = states(___)

Description
pos = states(sat) returns a 3-by-n-by-m array of the position history pos of each satellite in the
vector sat, where n is the number of time samples and m is the number of satellites. The rows
represent the x, y, z coordinates of the satellite in the Geocentric Celestial Reference Frame (GCRF).

[pos,velocity] = states(sat) returns a 3-by-n-by-m array of the inertial velocity velocity of
each satellite in the vector sat in GCRF.

[___] = states(sat,timeIn) returns one or both of the outputs as 3-by-1-by-m arrays in
addition to position at the specified datetime timeIn. If no time zone is specified in timeIn, the time
zone is assumed to be Universal Time Coordinated (UTC).

[___] = states(___ ,'CoordinateFrame',C) returns the outputs in the coordinates specified
by C.

[pos,velocity,timeOut] = states(___) returns the position and velocity history of the
satellites and the corresponding datetime in UTC.

Examples

Obtain States of Satellite in ECEF Frame

Create a satellite scenario object.

startTime = datetime(2021,5,25); % May 25, 2021, 12:00 AM UTC
stopTime = datetime(2021,5,26); % May 26, 2021, 12:00 AM UTC
sampleTime = 60; % In seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

Obtain the position and velocity of the satellite in the Earth-centered Earth-fixed (ECEF) frame
corresponding to May 25, 2021, 10:30 PM UTC.

 states

2-161

time = datetime(2021,5,25,22,30,0);
[position,velocity] = states(sat,time,"CoordinateFrame","ecef")

position = 3×1
107 ×

 -0.9431
 -3.0675
 2.7404

velocity = 3×1
103 ×

 -1.2166
 0.4198
 -1.6730

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeIn, the time zone is assumed to be Universal Time Coordinated (UTC).

C — Coordinate frame
'ecef' | 'inertial' | 'geographical'

Coordinate frame in which the outputs are returned, specified as 'ecef', 'inertial', or
'geographical'.

• The 'ecef' option returns the position and velocity coordinates in the Earth Centered Earth
Fixed (ECEF) frame. For more information on ECEF frames, see “Earth-Centered Earth-Fixed
Coordinates”.

• The 'inertial' option returns the position and velocity coordinates in the GCRF frame.
• The 'geographic' option returns the position as [lat; lon; altitude], where lat and lon are

latitude and longitude in degrees and altitude is the height above the surface of the Earth in
meters. The velocity returned is in the North-East-Down (NED) frame.

Output Arguments
pos — Position history
3-by-n-by-m array

Position history of the satellites in meters, returned as a 3-by-n-by-m array in the GCRF frame.

2 Functions

2-162

If the AutoSimulate property of the satellite scenario is true, the position history from StartTime
to StopTime is returned. Otherwise, the position history from StartTime to SimulationTime is
returned.

velocity — Velocity history
3-by-n-by-m array

Velocity history of the satellites in meters/second, returned as a 3-by-n-by-m array in the GCRF frame.

timeOut — Time samples of position and velocity
scalar | vector

Time samples of the position and velocity of the satellites, returned as a scalar or vector. If time
histories of the position and velocity of the satellite are returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 states

2-163

gimbalAngles
Steering angles of gimbal

Syntax
az = gimbalAngles(gimbal)
[az,el] = gimbalAngles(gimbal)
[___] = gimbalAngles(gimbal,timeIn)
[az,el,timeOut] = gimbalAngles(gimbal)

Description
az = gimbalAngles(gimbal) returns an array of gimbal azimuth az histories of the gimbals
defined in the vector gimbal.

[az,el] = gimbalAngles(gimbal) returns an array of gimbal azimuth azand gimbal elevation
el in the vector gimbal.

[___] = gimbalAngles(gimbal,timeIn) returns column vectors of gimbal azimuth and gimbal
elevation of gimbals defined in the vector gimbal at the specified time timeIn, depending on the
specified output arguments.

[az,el,timeOut] = gimbalAngles(gimbal) returns gimbal azimuth, gimbal elevation, and
corresponding time in UTC.

Examples

Retrieve Gimbal Angles at Specific Time

Create a satellite scenario object.

startTime = datetime(2020,10,10); % 10 October 2020, 12:00 AM UTC
stopTime = datetime(2020,10,11); % 11 October 2020, 12:00 AM UTC
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a gimbal to the satellite.

g = gimbal(sat);

2 Functions

2-164

Point the gimbal at 0 degree latitude and longitude.

pointAt(g,[0; 0; 0]);

Get the gimbal azimuth and gimbal elevation corresponding to October 10, 2020, 20:54 PM UTC.

time = datetime(2020,10,10,20,54,0);
[az,el] = gimbalAngles(g,time)

az = -5.4268

el = 19.0368

Input Arguments
gimbal — Gimbal
scalar | vector

Gimbal object whose steering angle is being calculated, specified as either a scalar or a vector.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeIn, the time zone is assumed to be Universal Time Coordinated (UTC).

Output Arguments
az — Gimbal azimuth
array

Gimbal azimuth histories of gimbals in degrees, returned as an array in the range [-180,180]. Each
row corresponds to a gimbal in gimbal, and each column corresponds to a time sample. This
represents the angle of rotation of the gimbal about its y-axis.

If AutoSimulate of the satellite scenario is true, az returns the gimbal azimuth history from
StartTime to StopTime. Otherwise the gimbal azimuth history is returned from StartTime to
SimulationStatus.

el — Gimbal elevation
array

Gimbal elevation histories of gimbals in degree, returned as an array in the range [0,180]. This
represents the angle of rotation of the gimbal about its y-axis. Each row corresponds to a gimbal in
gimbal, and each column corresponds to a time sample. This represents the angle of rotation of the
gimbal about its x-axis.

If AutoSimulate of the satellite scenario is true, el returns the gimbal elevation history from
StartTime to StopTime. Otherwise the gimbal elevation history is returned from StartTime to
SimulationStatus.

timeOut — Time samples between start and stop time of scenario
scalar | vector

 gimbalAngles

2-165

Time samples between start and stop time of the scenario, returned as a scalar or vector. If az and el
histories are returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-166

show
Package: matlabshared.satellitescenario

Show object in satellite scenario viewer

Syntax
show(item)
show(item,v)

Description
show(item) shows the item on all open Satellite Scenario Viewers.

show(item,v) shows the graphic on the Satellite Scenario Viewer specified by v.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack

 show

2-167

 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

2 Functions

2-168

Input Arguments
item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario object.

Note If item is a satellite or a ground station, then the associated transmitters, receivers and
gimbals are also displayed on the viewer.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

 show

2-169

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-170

hide
Package: matlabshared.satellitescenario

Hides satellite scenario entity from viewer

Syntax
hide(item)
hide(item,v)

Description
hide(item) hides item from all open satellite scenario viewers.

hide(item,v) hides the specified satellite scenario entity on the satellite scenario viewer specified
by v.

Examples

Hide Satellite from Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Visualize the satellite using the Satellite Scenario Viewer.

viewer = satelliteScenarioViewer(sc);

 hide

2-171

Hide the satellite from the viewer.

hide(sat,viewer);

2 Functions

2-172

Input Arguments
item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario object.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also
Objects
satellite | satelliteScenarioViewer

Functions
play | show | satelliteScenario | access | groundStation | hideAll | showAll

Topics
“Model, Visualize, and Analyze Satellite Scenario”

 hide

2-173

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-174

ebno
Package: satcom.satellitescenario

Eb/No at final node of link

Syntax
e = ebno(lnk)
e = ebno(lnk,timeIn)
[e,timeOut] = ebno(___)

Description
e = ebno(lnk) returns a matrix e of the history of received energy per bit to noise power spectral
density (Eb/No) values in dB at the final node in each possible multihop link in the vector lnk. The
rows of the matrix correspond to the link object in lnk and the columns correspond to the time
sample.

e = ebno(lnk,timeIn) returns a column vector of Eb/No e in dB at the final node in each link
defined in the vector lnk at the specified datetime timein. Each element of e corresponds to a link
in lnk. If no timezone is specified in timeIn, the time zone is assumed to be UTC.

[e,timeOut] = ebno(___) returns the received Eb/No values and the corresponding times in
Universal Time Incorporated (UTC).

Examples

Retrieve Time Samples and EbNo of Reciever

Create a satellite scenario object.

startTime = datetime(2020,12,13,10,42,0);
stopTime = startTime + days(1);
sampleTime = 2000; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity, ...
 inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly);

Add a transmitter to the satellite.

tx = transmitter(sat);

 ebno

2-175

Add a ground station to the scenario.

latitude = 0; % degrees
longitude = 30; % degrees
gs = groundStation(sc,latitude,longitude);

Add a receiver to the ground station.

rx = receiver(gs,"MountingAngles",[0; 180; 0]);

Add link analysis to the transmitter.

lnk = link(tx,rx);

Get the Eb/No history at the receiver and their time samples.

[e, t] = ebno(lnk)

e = 1×45
103 ×

 -Inf -0.0292 -Inf -1.9496 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf

t = 1x45 datetime
Columns 1 through 3

 13-Dec-2020 10:42:00 13-Dec-2020 11:15:20 13-Dec-2020 11:48:40

Columns 4 through 6

 13-Dec-2020 12:22:00 13-Dec-2020 12:55:20 13-Dec-2020 13:28:40

Columns 7 through 9

 13-Dec-2020 14:02:00 13-Dec-2020 14:35:20 13-Dec-2020 15:08:40

Columns 10 through 12

 13-Dec-2020 15:42:00 13-Dec-2020 16:15:20 13-Dec-2020 16:48:40

Columns 13 through 15

 13-Dec-2020 17:22:00 13-Dec-2020 17:55:20 13-Dec-2020 18:28:40

Columns 16 through 18

 13-Dec-2020 19:02:00 13-Dec-2020 19:35:20 13-Dec-2020 20:08:40

Columns 19 through 21

 13-Dec-2020 20:42:00 13-Dec-2020 21:15:20 13-Dec-2020 21:48:40

Columns 22 through 24

 13-Dec-2020 22:22:00 13-Dec-2020 22:55:20 13-Dec-2020 23:28:40

Columns 25 through 27

2 Functions

2-176

 14-Dec-2020 00:02:00 14-Dec-2020 00:35:20 14-Dec-2020 01:08:40

Columns 28 through 30

 14-Dec-2020 01:42:00 14-Dec-2020 02:15:20 14-Dec-2020 02:48:40

Columns 31 through 33

 14-Dec-2020 03:22:00 14-Dec-2020 03:55:20 14-Dec-2020 04:28:40

Columns 34 through 36

 14-Dec-2020 05:02:00 14-Dec-2020 05:35:20 14-Dec-2020 06:08:40

Columns 37 through 39

 14-Dec-2020 06:42:00 14-Dec-2020 07:15:20 14-Dec-2020 07:48:40

Columns 40 through 42

 14-Dec-2020 08:22:00 14-Dec-2020 08:55:20 14-Dec-2020 09:28:40

Columns 43 through 45

 14-Dec-2020 10:02:00 14-Dec-2020 10:35:20 14-Dec-2020 10:42:00

Input Arguments
lnk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeIn, the time zone is assumed to be Universal Time Coordinated (UTC).

Output Arguments
e — Eb/No
scalar | vector | matrix

Eb/No, returned as a scalar, vector, or a matrix. If timeIn is not specified, e is a row vector or a
matrix.

timeOut — Time samples of output Eb/No
scalar | vector

Time samples of the output Eb/No, returned as a scalar or vector. If time history of Eb/No is returned,
timeOut is a row vector.

 ebno

2-177

Note When AutoSimulate of the satellite scenario is true, the Eb/No history from StartTime to
StopTime is returned. When it is false, the Eb/No history from StartTime to SimulationTime is
returned.

See Also
Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-178

access
Package: matlabshared.satellitescenario

Add access analysis objects to satellite scenario

Syntax
access(asset1,asset2,...)
ac = access(___ ,'Viewer',Viewer)
ac = access(___)

Description
access(asset1,asset2,...) adds Access analysis objects defined by nodes asset1, asset2,
and so on.

ac = access(___ ,'Viewer',Viewer) sets the viewer in addition to any input argument
combination from previous syntaxes. For example, 'Viewer',v1 picks the viewer v1.

ac = access(___) returns added access analysis objects in the row vector ac.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

 access

2-179

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

2 Functions

2-180

Input Arguments
asset1,asset2,... — Satellite, ground station, or conical sensor
scalar | vector

Satellite, GroundStation, or ConicalSensors object, specified as a scalar or vector. These
objects must belong to the same satelliteScenario object. The function adds the access analysis
object to the Accesses property of the corresponding asset in asset1.

• If the asset in a given node is a scalar, every analysis object uses the same asset for that node
position.

• If the asset in a given node is a vector, its length must equal the number of access analysis objects.
Each access analysis object uses the corresponding element of the asset vector for that node
location.

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Output Arguments
ac — Access analysis
scalar | vector

Access analysis between input objects, returned as either a scalar or vector.

Note When the AutoSimulate property is set to false, SimulationStatus must be NotStarted
to call access function. Otherwise, use the restart function to reset the SimulationStatus to
NotStarted. Note that restart also erases the simulation data.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 access

2-181

groundStation
Package: matlabshared.satellitescenario

Add ground station to satellite scenario

Syntax
groundStation(scenario)
groundStation(scenario,lat,lon)
groundStation(___ ,Name,Value)
gs = groundStation(___)

Description
groundStation(scenario) adds a default GroundStation object to the specified satellite
scenario.

groundStation(scenario,lat,lon) sets the Latitude and Longitude properties of the ground
station to lat and lon, respectively. lat and lon must be of the same length. This length specifies
the number of ground stations that the function adds to the input scenario. Together, lat and lon
indicate the locations of the ground stations.

groundStation(___ ,Name,Value) sets options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

gs = groundStation(___) returns a vector of handles to the added ground stations. Specify any
input argument combination from previous syntaxes.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;

2 Functions

2-182

trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

 groundStation

2-183

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

lat, lon — Latitude and longitude
real-valued scalar | real-valued vector

Latitude and longitude of the ground station, specified as a real-valued scalar or real-valued vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

2 Functions

2-184

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Name — groundStation name
"groundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

groundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one groundStation is added, specify Name as a string scalar or a character vector.
• If multiple groundStations are added, specify Name as a string scalar, character vector, string

vector or a cell array of character vectors. All groundStations added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of groundStations being added.
Each groundStation is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID of the groundStations added by the groundStation object function.
Data Types: char | string

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

 groundStation

2-185

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to groundStation, longitude specified
as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the groundStation.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the groundStation.

When AutoSimulate of the satellite scenario is false, MinElevationAngle can be modified while
the SimulationStatus is NotStarted or InProgress.
Data Types: double

Output Arguments
gs — Ground station in scenario
GroundStation object

Ground station in the scenario, returned as a GroundStation object belonging to the satellite
scenario specified by the input scenario.

2 Functions

2-186

You can modify the GroundStation object by changing its property values. The name-value
arguments used when calling this function correspond to property names.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | transmitter | receiver

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations Using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 groundStation

2-187

transmitter
Package: matlabshared.satellitescenario

Add transmitter to satellite scenario

Syntax
transmitter(parent)
transmitter(parent,Name,Value)
tx = transmitter(___)

Description
transmitter(parent) adds a Transmitter object to the parent which can be a Satellites,
GroundStations, or Gimbals.

transmitter(parent,Name,Value) adds transmitters to parents in parent using additional
parameters specified by optional name-value arguments. For example, 'MountingAngle',[20;
35; 10] sets the yaw, pitch, and roll angles of the transmitter to 20, 35, and 10 degrees,
respectively.

tx = transmitter(___) returns added transmitters as a row vector tx. Specify any input
argument combination from previous syntaxes.

Note When AutoSimulate of the satellite scenario is false, you can call transmitter only when
SimulationStatus is NotStarted. Otherwise, you must call the restart function to erase the
simulation data and reset the SimulationStatus to NotStarted.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]

2 Functions

2-188

 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

 transmitter

2-189

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

2 Functions

2-190

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

Input Arguments
parent — Element of scenario to which transmitter is added
scalar | vector

Element of scenario to which the transmitter is added, specified as a scalar or vector of satellites,
ground stations or gimbals. The number of transmitters specified is determined by the size of the
inputs.

• If parent is a scalar, all transmitters are added to the parent.
• If parent is a vector and the number of transmitters specified is one, that transmitter is added to

each parent.
• If parent is a vector and the number of transmitters specified is more than one, the number of

transmitters must equal the number of parents and each parent gets one transmitter.

 transmitter

2-191

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter
to 20, 35, and 10 degrees, respectively.

Name — transmitter name
"transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one transmitter is added, specify Name as a string scalar or a character vector.
• If multiple transmitters are added, specify Name as a string scalar, character vector, string vector

or a cell array of character vectors. All transmitters added as a string scalar or a character vector
are assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of transmitters being added. Each transmitter is assigned
the corresponding name from the vector or cell array.

In the default value, idx is the ID of the transmitters added by the transmitter object function.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

• One transmitter — MountingLocation is a three-element vector.
• Multiple transmitters — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified transmitters.
When specified as a matrix, MountingLocation must contain three rows and the same number
of columns as the transmitters. The columns correspond to the mounting location of each specified
transmitter and the rows correspond to the mounting location coordinates in the parent body
frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

2 Functions

2-192

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One transmitter — MountingAngles is a three-element vector.
• Multiple transmitters — MountingAngles can be a three-element vector or a matrix. When
specified as a vector, the same MountingAngless are assigned to all specified transmitters. When
specified as a matrix, MountingAngles must contain three rows and the same number of
columns as the transmitters. The columns correspond to the mounting angles of each specified
transmitter and the rows correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with transmitter
scalar | vector

Antenna object associated with the transmitter, specified as either a scalar or a vector. This object
can be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array
System Toolbox. The default Gaussian antenna has a dish diameter of 1 m and an aperture efficiency
of 0.65.

Antenna can be specified in transmitter as a name-value pair consisting of 'Antenna' and a scalar,
antenna or phased array objects.

• If only one transmitter is added, Antenna must be a scalar.
• If multiple transmitters are added, Antenna as a vector. The same antenna is assigned to all

transmitters.

SystemLoss — System loss in transmitter
5 (default) | scalar | vector

System loss in dB, specified as a scalar or a vector.

System loss can be specified in transmitter as a name-value pair consisting of 'SystemLoss' and a
scalar, or vector.

• If only one transmitter is added, specify SystemLoss as a scalar.
• If multiple transmitters are added, specify SystemLoss as a scalar or a vector. When

SystemLoss is a scalar, the same SystemLoss is assigned to all transmitters. When SystemLoss
is a vector, its length must equal the number of transmitter and each element of SystemLoss is
assigned to the corresponding transmitter specified.

When AutoSimulate property of the satellite scenario is false, you can modify the SystemLoss
value while the SimulationStatus is NotStarted or InProgress.

Frequency — Transmitter frequency
14e9 (default) | scalar | vector

 transmitter

2-193

Transmitter frequency in Hz, specified as a name-value pair consisting of 'Frequency' and a scalar
double or a vector double.

• If one transmitter is added, the Frequency must be a scalar.
• If multiple transmitters are added, the frequency value can be a scalar or a vector. All transmitters

added as a scalar are assigned the same specified Frequency. The length of the vector must
equal the number of transmitters added and each element of Frequency is assigned to the
corresponding transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the Frequency value while the
SimulationStatus is NotStarted or InProgress.

BitRate — Bit rate of transmitter
10 (default) | scalar | vector

Bit rate of the transmitter in Mbps, specified as a name-value pair consisting of 'BitRate' and a scalar
double or a vector double.

• If one transmitter is added, the bit rate value must be a scalar.
• If multiple transmitters are added, the bit rate value can be a scalar or a vector. All transmitters

added as a scalar are assigned the same specified BitRate. The length of the vector must equal
the number of transmitters added and each element of BitRate is assigned to the corresponding
transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the BitRate value while the
SimulationStatus is NotStarted or InProgress.

Power — Power of high power amplifier
12 (default) | scalar | vector

Power of the high power amplifier in dbW, specified as a name-value pair consisting of 'Power' and a
scalar double or a vector double.

• If one transmitter is added, the power value must be a scalar.
• If multiple transmitters are added, the power value can be a scalar or a vector. All transmitters

added as a scalar are assigned the same specified Power. The length of the vector must equal the
number of transmitters added and each element of Power is assigned to the corresponding
transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the Power value while the
SimulationStatus is NotStarted or InProgress.

Output Arguments
tx — Transmitter
row vector

Transmitters attached to parent, returned as a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

2 Functions

2-194

Functions
play | show | groundStation | access | link | receiver | hide | pattern

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 transmitter

2-195

receiver
Package: matlabshared.satellitescenario

Add receiver to satellite scenario

Syntax
receiver(parent)
receiver(parent,Name,Value)
rx = receiver(___)

Description
receiver(parent) adds a Receiver object to the parent using default parameters. parent can
be a Satellites, GroundStations, or Gimbals.

receiver(parent,Name,Value) adds receivers to parents in parent using additional parameters
specified by optional name-value arguments. For example, 'MountingAngle',[20; 35; 10] sets
the yaw, pitch, and roll angles of the transmitter to 20, 35, and 10 degrees, respectively.

rx = receiver(___) returns added receivers as a row vector rx. Specify any input argument
combination from previous syntaxes.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees

2 Functions

2-196

rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

 receiver

2-197

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

2 Functions

2-198

Input Arguments
parent — Element of scenario to which receiver is added
scalar | vector

Element of scenario to which the receiver is added, specified as a scalar or vector of satellites,
ground stations or gimbals. The number of receivers specified is determined by the size of the inputs.

• If parent is a scalar, all receivers are added to the parent.
• If parent is a vector and the number of receivers specified is one, that receiver is added to each

parent.
• If parent is a vector and the number of receivers specified is more than one, the number of

receivers must equal the number of parents and each parent gets one receiver.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the receiver to
20, 35, and 10 degrees, respectively.

 receiver

2-199

Name — receiver name
"receiver idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one receiver is added, specify Name as a string scalar or a character vector.
• If multiple receivers are added, specify Name as a string scalar, character vector, string vector or a

cell array of character vectors. All receivers added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of receivers being added. Each receiver is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the receivers added by the receiver object function.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

• One receiver — MountingLocation is a three-element vector.
• Multiple receivers — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified receivers. When
specified as a matrix, MountingLocation must contain three rows and the same number of
columns as the receivers. The columns correspond to the mounting location of each specified
receiver and the rows correspond to the mounting location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One receiver — MountingAngles is a three-element vector.
• Multiple receivers — MountingAngles can be a three-element vector or a matrix. When specified

as a vector, the same MountingAngless are assigned to all specified receivers. When specified as
a matrix, MountingAngles must contain three rows and the same number of columns as the
receivers. The columns correspond to the mounting angles of each specified receiver and the rows
correspond to the yaw, pitch, and roll angles parent body frame.

2 Functions

2-200

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with receiver
scalar | vector

Antenna object associated with the receiver, specified as either a scalar or a vector. This object can
be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default Gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

Antenna can be specified in receiver as a name-value pair consisting of 'Antenna' and a scalar,
antenna or phased array objects.

• If only one receiver is added, Antenna must be a scalar.
• If multiple receivers are added, Antenna as a vector. The same antenna is assigned to all

receivers.

SystemLoss — System loss in receiver
5 (default) | scalar | vector

System loss in dB, specified as a scalar or a vector.

System loss can be specified in receiver as a name-value pair consisting of 'SystemLoss' and a
scalar, or vector.

• If only one receiver is added, specify SystemLoss as a scalar.
• If multiple receivers are added, specify SystemLoss as a scalar or a vector. When SystemLoss is

a scalar, the same SystemLoss is assigned to all receivers. When SystemLoss is a vector, its
length must equal the number of receiver and each element of SystemLoss is assigned to the
corresponding receiver specified.

When AutoSimulate property of the satellite scenario is false, you can modify the SystemLoss
value while the SimulationStatus is NotStarted or InProgress.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar | vector

Gain to noise temperature ratio of the antenna in dB/K, specified as the name-value pair consisting of
'GainToNoiseTemperatureRatio' and a scalar or a vector.

• If only one receiver is added, specify GainToNoiseTemperatureRatio as a scalar.
• If multiple receivers are added, specify GainToNoiseTemperatureRatio as a scalar, or a vector.

When GainToNoiseTemperatureRatio is a scalar, the same GainToNoiseTemperatureRatio
is assigned to all receivers. When GainToNoiseTemperatureRatio is a vector, its length must
equal the number of receivers and each element of GainToNoiseTemperatureRatio is assigned
to the corresponding receiver specified.

 receiver

2-201

When AutoSimulate property of the satellite scenario is false, you can modify the
GainToNoiseTemperatureRatio value while the SimulationStatus is NotStarted or
InProgress.

RequiredEbNo — Minimum Eb/No necessary for link closure
10 (default) | scalar | vector

Minimum energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure in
dB, specified as the name-value pair consisting of 'RequiredEbNo' and a scalar or a vector.

• If only one receiver is added, specify RequiredEbNo as a scalar.
• If multiple receivers are added, specify RequiredEbNo as a scalar or a vector. When

RequiredEbNo is a scalar, the same RequiredEbNo is assigned to all receivers. When
RequiredEbNo is a vector, its length must equal the number of receivers and each element of
RequiredEbNo is assigned to the corresponding receiver specified.

When AutoSimulate property of the satellite scenario is false, the RequiredEbNo property can
be modified while the SimulationStatus is NotStarted or InProgress.

Output Arguments
rx — Receiver
row vector

Receivers attached to parent, returned as a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer | Receiver | Transmitter

Functions
play | show | groundStation | transmitter | link | access | hide | pattern

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-202

gimbal
Add gimbal to satellite or ground station

Syntax
gimbal(parent)
gimbal(parent,Name,Value)
gimbal(___)

Description
gimbal(parent) adds a default Gimbal object to each parent in the parent vector, which can be a
satellite, or a ground station. A gimbal can be added to satellites and ground stations, and
dynamically change orientation independent of the parent. Transmitters, receivers, and conical
sensors can be mounted on the gimbals.

gimbal(parent,Name,Value) adds gimbals to parents in parent using additional parameters
specified by optional name-value pairs.

gim = gimbal(___) returns the added gimbals in the row vector gim.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137; % meters
eccentricity = 0;
inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees

 gimbal

2-203

argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees
 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]
 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g =
 Gimbal with properties:

 Name: Gimbal 3

2 Functions

2-204

 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

 gimbal

2-205

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17
 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

2 Functions

2-206

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
parent — Element of scenario to which gimbal is added
scalar | vector

Element of scenario to which the gimbal is added, specified as a scalar or vector of satellites, or
ground stations. The number of gimbals specified is determined by the size of the inputs.

• If parent is a scalar, all gimbals are added to the parent.
• If parent is a vector and the number of gimbals specified is one, that gimbal is added to each

parent.
• If parent is a vector and the number of gimbals specified is more than one, the number of

gimbals must equal the number of parents and each parent gets one gimbal.

 gimbal

2-207

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of gimbal to 20, 35,
and 10 degrees, respectively.

Name — gimbal name
"gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one gimbal is added, specify Name as a string scalar or a character vector.
• If multiple gimbals are added, specify Name as a string scalar, character vector, string vector or a

cell array of character vectors. All gimbals added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of gimbals being added. Each gimbal is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the gimbals added by the gimbal object function.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

• One gimbal — MountingLocation is a three-element vector.
• Multiple gimbals — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified gimbals. When
specified as a matrix, MountingLocation must contain three rows and the same number of
columns as the gimbals. The columns correspond to the mounting location of each specified
gimbal and the rows correspond to the mounting location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

2 Functions

2-208

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One gimbal — MountingAngles is a three-element vector.
• Multiple gimbals — MountingAngles can be a three-element vector or a matrix. When specified

as a vector, the same MountingAngless are assigned to all specified gimbals. When specified as a
matrix, MountingAngles must contain three rows and the same number of columns as the
gimbals. The columns correspond to the mounting angles of each specified gimbal and the rows
correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

Note The size of specified name-value pairs determines the number of receivers specified. Refer to
these properties to understand how they must be defined when specifying multiple receivers.

Output Arguments
gim — Gimbal
scalar | vector

Gimbal object attached to parent, returned as either a scalar or a vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | satellite | conicalSensor | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 gimbal

2-209

fieldOfView
Package: matlabshared.satellitescenario

Visualize field of view of conical sensor

Syntax
fieldOfView(sensor)
fieldOfView(sensor,Name,Value)
fov = fieldOfView(___)

Description
fieldOfView(sensor) adds a FieldOfView object to the specified conical sensor, and draws
contours on the Earth. Each contour represents the field of view of a conical sensor in sensor based
on the current state of the scenario.

Locations inside the contour are inside the field of view. The field of view contours are drawn on all
open satellite scenario viewers. The contours are the lines of intersection of the surface of the earth
and the field of view cone. The half angle of the field of view cone equals the MaxViewAngle property
of the conical sensor, and the axis of the cone is the z-axis (or boresight) of the conical sensor. The
vertex of the cone is located at the position of the conical sensor. The cone becomes wider along the
positive body z-axis of the conical sensor.

fieldOfView(sensor,Name,Value) specifies options by using one or more name-value
arguments.

fov = fieldOfView(___) returns a vector of handles to the added field of view graphic objects.
Specify any input combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]

2 Functions

2-210

 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137; % meters
eccentricity = 0;
inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees
 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]

 fieldOfView

2-211

 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g =
 Gimbal with properties:

 Name: Gimbal 3
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

2 Functions

2-212

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17
 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

 fieldOfView

2-213

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
sensor — Conical sensor
ConicalSensor object

Conical sensor, specified as a ConicalSensor object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LineWidth',2.5 sets the line width of the field of view to 2.5 pixels.

2 Functions

2-214

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

NumContourPoints — Number of contour points
40 (default) | integer greater than or equal to 4

Number of contour points used to draw the contour of the field of view, specified as an integer
greater than or equal to 4.
Data Types: double

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

 fieldOfView

2-215

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Output Arguments
fov — Field of view of conical sensor
row vector of FieldOfView objects

Field of view of conical sensor, returned as a row vector of FieldOfView objects.

Note When the AutoSimulate property is set to false, the SimulationStatus must equal
NotStarted to call the fieldOfView function. Otherwise, use the restart function to reset the
SimulationStatus to NotStarted, which erases the simulation data.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2 Functions

2-216

Introduced in R2021a

 fieldOfView

2-217

link
Package: satcom.satellitescenario

Add link analysis objects to transmitter

Syntax
link(asset1,asset2,...,assetN)
lnk = link(___ ,NAME,VALUE)
lnk = link(___)

Description
link(asset1,asset2,...,assetN) adds Link analysis objects defined by nodes asset1,
asset2, and so on.

lnk = link(___ ,NAME,VALUE) adds link analysis objects using additional parameters specified as
name-value pairs.

lnk = link(___) adds link analysis objects and returns the vector link

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees

2 Functions

2-218

trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees

 link

2-219

longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

2 Functions

2-220

Input Arguments
asset1,asset2,...,assetN — Adds link analysis objects
scalar | vector

Adds link analysis objects defined by nodes asset1, specified as a scalar or vector of transmitters,
asset2, and so on, specified as a scalar or a vector of transmitters or receivers.

• If the asset in a given node is scalar, every link analysis object uses the same asset for that node
position.

• If the asset in a given node is vector, the asset length must equal the number of link analysis
objects.

Each link analysis object uses the corresponding element of the asset vector for that node location.
The IDs of ASSET1, ASSET2, ASSET3, and so on, specify the Sequence of the link. These objects must
belong to the same satelliteScenario object. Each link analysis object is added to the Link
property of the corresponding transmitter in ASSET1.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LineWidth',2.5 sets the line width of the field of view to 2.5 pixels.

 link

2-221

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Output Arguments
lnk — Link analysis
scalar | row vector

Link analysis object between input objects, returned as either a scalar or a row vector.

Note When AutoSimulate of the satellite scenario is false, you can call link only when the
SimulationStatus is NotStarted. Otherwise, you must call the restart function to erase the
simulation data and reset the SimulationStatus to NotStarted.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-222

gaussianAntenna
Package: satcom.satellitescenario

Add Gaussian antennas

Syntax
gaussianAntenna(trx)
gaussianAntenna(trx,Name,Value)
ant = gaussianAntenna(___)

Description
gaussianAntenna(trx) adds Gaussian antenna to each transmitter or receiver in the vector trx
using default parameters. The existing antennas in the transmitters or receivers are overwritten.

gaussianAntenna(trx,Name,Value) adds a Gaussian antenna to each transmitter or receiver in
the vector trx using additional parameters specified by optional name-value pairs.

ant = gaussianAntenna(___) adds a Gaussian antenna to the transmitters or receivers and
returns them in the vector ant.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees

 gaussianAntenna

2-223

argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees

2 Functions

2-224

longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

 gaussianAntenna

2-225

Input Arguments
trx — Transmitter or receiver
scalar | vector

Transmitter or receiver object to which the Gaussian antenna is added, specified as either a scalar or
a vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DishDiameter',1.7 sets the dish diameter of the antenna to 1.7 meters upon creation.

DishDiameter — Diameter of the antenna dish
1 (default) | scalar | vector

This property is read-only.

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Diameter of the Gaussian antenna dish in meters, specified as a scalar or a vector.

2 Functions

2-226

• If DishDiameter is scalar, the same value is assigned to all transmitters or receivers in trx.
• If DishDiameter is vector, the length of the vector must equal that of trx, and each transmitter

or receiver in trx is assigned the corresponding element in DishDiameter vector.

ApertureEfficiency — Aperture efficiency of Gaussian antenna
0.65 (default) | scalar in the range (0,1] | vector

This property is read-only.

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Aperture efficiency of the Gaussian antenna, specified as a scalar in the range (0,1].

• If ApertureEfficiency is scalar, the same value is assigned to all transmitters or receivers in
trx.

• If ApertureEfficiency is vector, the length of the vector must equal that of trx, and each
transmitter or receiver in trx is assigned the corresponding element in ApertureEfficiency
vector.

Output Arguments
ant — Gaussian antenna
scalar | vector

Gaussian antenna object added to the specified transmitter or receiver, returned as either a scalar or
a vector.

Note When AutoSimulate of the satellite scenario is false, you can call gaussianAntenna only
when SimulationStatus is NotStarted. Otherwise, you must call the restart function to erase
the simulation data and reset the SimulationStatus to NotStarted.

See Also
Objects
satelliteScenario

Functions
hide | show | play | satellite | access | groundStation | receiver | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 gaussianAntenna

2-227

groundTrack
Package: matlabshared.satellitescenario

Add ground track object to satellite in scenario

Syntax
groundTrack(sat)
groundTrack(___ ,Name,Value)

Description
groundTrack(sat) adds ground track visualization for each satellite in sat based on their current
positions. The ground track begins at the scenario StartTime, and ends at the StopTime. The spacing
between samples that make up the ground track visualization is determined by the scenario
SampleTime. If no viewer is open, a new viewer is launched, and the ground track is displayed. If a
viewer is already open, the ground track is added to that viewer. By default, ground tracks will be
displayed in 2-D.

groundTrack(___ ,Name,Value) adds a groundTrack object by using one or more name-value
pairs. Enclose each property name in quotes.

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530; % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity; % seconds
earthStandardGravitationalParameter = 398600.4418e9; % m^3/s^2
semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))^2))^(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

2 Functions

2-228

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","GEO Sat");

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime",leadTime,"TrailTime",trailTime)

gt =
 GroundTrack with properties:

 LeadTime: 172800
 TrailTime: 172800
 LineWidth: 1
 LeadLineColor: [1 0 1]
 TrailLineColor: [1 0.5000 0]
 VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);

 groundTrack

2-229

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LeadTime',3600 sets the lead time of the ground track to 3600 seconds upon creation.

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

LeadTime — Period of future ground track to be visualized
StartTime to StopTime (default) | real positive scalar

2 Functions

2-230

Period of future ground track to be visualized in Viewer, specified as a comma-separated pair
consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | real positive scalar

Period of ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar

Visual width of ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0,10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

 groundTrack

2-231

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

2 Functions

2-232

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”

 groundTrack

2-233

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-234

gnssCACode
Generate C/A-code for GPS, NavIC, and QZSS satellites

Syntax
code = gnssCACode(prnid,gnsstype)

Description
code = gnssCACode(prnid,gnsstype) generates coarse acquisition codes (C/A-codes) for the
specified pseudo-random noise (PRN) index, prnid, of the satellite constellation specified by
gnsstype.

Examples

Generate C/A-code for Multiple GPS Satellites

Specify the unique pseudo-random noise (PRN) index for for three GPS satellites.

prnid = [43 87 10]; % 3 satellites
gnsstype = "GPS"; % Global navigation satellite constellation type

Generate the C/A-code for these three GPS satellites.

code = gnssCACode(prnid,gnsstype);
size(code)

ans = 1×2

 1023 3

Generate C/A-code for NavIC Satellites over Multiple Epochs

Specify the unique PRN index for two NavIC S-band satellites.

prnid = [2 13];
gnsstype = "NavIC S-SPS"; % S-band

Generate the C/A-code for these two NavIC S-band satellites.

code = gnssCACode(prnid,gnsstype);

Calculate the output for 10 C/A-code epochs.

numCAEpochs = 10;
fullCode = repmat(code,numCAEpochs,1);
size(fullCode)

 gnssCACode

2-235

ans = 1×2

 10230 2

Input Arguments
prnid — Satellite PRN index
integer | vector of integers

Satellite PRN index for which the function generates a C/A-code, specified as a scalar indicating a
PRN index for a single satellite or a vector indicating PRN indices for multiple satellites. Valid values
of PRN indices depend on the gnsstype input.

gnsstype Value PRN Index Valid Value
"GPS" integer in the range [1, 210]
"QZSS" integer in the range [183, 202]
"NavIC L5-SPS" or "NavIC S-SPS" integer in the range [1, 14]

Data Types: double | uint8

gnsstype — Type of global navigation satellite constellation
"GPS" | "QZSS" | "NavIC L5-SPS" | "NavIC S-SPS"

Type of global navigation satellite constellation, specified as one of these values.

• "GPS"
• "QZSS"
• "NavIC L5-SPS"
• "NavIC S-SPS"

Data Types: char | string

Output Arguments
code — Generated C/A-code
column vector | matrix

Generated C/A-code, returned as one of these options.

• Column vector of length 1023 — When you specify prnid as a scalar.
• Matrix — When you specify prnid as a vector. The number of rows of this matrix is equal to 1023,

and the number of columns correspond to the length of the prnid vector. Each column of this
matrix represents the generated C/A-code corresponding to the element in the prnid vector.

For detailed information on the relationship between PRN index values and the generated C/A-codes,
refer to IS-GPS-200L Table 3-Ia, 3-Ib, and 6-I [1], ISRO-IRNSS-ICD-SPS-1.1 Table 7 [2], and IS-QZSS-
PNT-004 Table 3.2.2-2 [3].

2 Functions

2-236

References
[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces". GPS

Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

[2] ISRO-IRNSS-ICD-SPS-1.1. "Signal in space ICD for standard positioning service". ISRO satellite
navigation programme. August 2017.

[3] IS-QZSS-PNT-004. "Quasi-Zenith Satellite System. Interface Specification. Satellite Positioning,
Navigation and Timing Service". Cabinet office, Government of Japan. January 25, 2021.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gpsPCode | comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

Introduced in R2021b

 gnssCACode

2-237

dvbrcs2TurboEncode
Encode DVB-RCS2-compliant turbo codes

Syntax
code = dvbrcs2TurboEncode(msg,r,permparams)

Description
code = dvbrcs2TurboEncode(msg,r,permparams) encodes the message msg by using a Digital
Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo encoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. r is
the code rate, and permparams specifies the permutation control parameters that the function uses
to interleave the input message. Output code contains the DVB-RCS2-encoded message.

Examples

Encode Message Using DVB-RCS2 Turbo Encoder

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with constant code rate and frame length.

Specify the frame length, code rate, and permutation control parameters.

frameLen = 40*8; % Payload length in bits
r = "3/4";
permParams = [17 9 5 14 1];

Generate a column vector of random binary data.

msg = randi([0 1],frameLen,1);

Encode the message by using DVB-RCS2 turbo encoder.

code = dvbrcs2TurboEncode(msg,r,permParams);

Encode Message Using DVB-RCS2 Turbo Encoder with Variable Code Rates and Frame
Lengths

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with variable code rates and frame lengths.

Specify the frame lengths, code rates, and permutation control parameters.

frameLen = [10*8 100*8 49*8]; % Payload length in bits
r = {'1/3','1/2','2/3'};
permParams = [31 1 3 4 2];

2 Functions

2-238

Generate the column vectors of binary data and encode the message using DVB-RCS2 turbo encoder.

% Initialize output as a 3-by-1 cell array
code = cell(length(r),1);
for frmIdx = 1:length(frameLen)
 msg = randi([0 1],frameLen(frmIdx),1);
 code{frmIdx} = dvbrcs2TurboEncode(msg,r{frmIdx},permParams);
end

Input Arguments
msg — Input message
binary-valued column vector

Input message, specified as a binary-valued column vector. The length of this column vector must be
in the range [1, 65,535] bytes.
Data Types: double | int8 | logical

r — Code rate
"1/3" | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

• "1/3"
• "1/2"
• "2/3"
• "3/4"
• "4/5"
• "5/6"
• "6/7"
• "7/8"

Data Types: char | string

permparams — Permutation control parameters
vector

Permutation control parameters that the function uses to interleave the input message, specified as a
vector of these five elements in order: P, Q0, Q1, Q2, and Q3. P must be in the range [9, 255], and Q0,
Q1, Q2, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be coprime to half of the length of the
input msg.
Data Types: double | uint8

Output Arguments
code — DVB-RCS2-encoded message
binary-valued column vector

 dvbrcs2TurboEncode

2-239

DVB-RCS2-encoded message, returned as a binary-valued column vector. The data type of the code is
same as that of the input msg.
Data Types: double | int8 | logical

References
[1] EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive

Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator | comm.TurboEncoder

Introduced in R2021b

2 Functions

2-240

dvbrcs2TurboDecode
Decode DVB-RCS2-compliant turbo codes

Syntax
decoded = dvbrcs2TurboDecode(code,r,permparams)
decoded = dvbrcs2TurboDecode(code,r,permparams,numiter)

Description
decoded = dvbrcs2TurboDecode(code,r,permparams) decodes the soft bits in code by using
a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo decoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. r is
the code rate, and permparams are the permutation control parameters that the function uses to
interleave the input soft bits data.

decoded = dvbrcs2TurboDecode(code,r,permparams,numiter) specifies the number of
decoding iterations.

Examples

Transmit and Decode DVB-RCS2 Encoded Data

Transmit a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
encoded signal through an additive white Gaussian noise (AWGN) channel, and then decode it using a
DVB-RCS2 duo-binary turbo decoder.

Specify the frame length, code rate, and permutation control parameters.

frameLen = 100*8; % Payload length in bits
r = "2/3";
permParams = [37 0 2 0 2];

Generate a column vector of random binary data, and then encode the message by using a DVB-RCS2
turbo encoder.

msg = randi([0 1],frameLen,1);
code = dvbrcs2TurboEncode(msg,r,permParams);

Modulate the encoded message, and then pass it through an AWGN channel.

modCode = qammod(code,16,'gray', ...
 'InputType','bit', ...
 'UnitAveragePower',true); % 16QAM Modulation
snrdB = 10; % SNR
receivedCode = awgn(modCode,snrdB);

Demodulated the received signal.

noiseVar = 10.^(-snrdB/10); % Noise variance
demodLLR = qamdemod(receivedCode,16,'gray', ...

 dvbrcs2TurboDecode

2-241

 'OutputType','llr', ...
 'UnitAveragePower',true, ...
 'NoiseVariance',noiseVar); % 16QAM Demodulation

Decode the demodulated soft bits by using a DVB-RCS2 turbo decoder.

decoded = dvbrcs2TurboDecode(-1*demodLLR,r, ...
 permParams);

Display the erroneous bits.

fprintf('Number of bit errors = %f\n',sum(msg~=decoded))

Number of bit errors = 0.000000

Calculate BER for DVB-RCS2 Encode-Decode Chain

Calculate bit error rate (BER) for a Digital Video Broadcasting Second Generation Return Channel
over Satellite (DVB-RCS2) encode-decode chain.

Specify the frame length, code rate, and permutation control parameters.

frameLen = 25*8; % Payload length in bits
r = "3/4";
permParams = [19 13 2 9 15];

Define the simulation parameters.

snrdB = 6; % SNR
nVar = 10.^(-snrdB/10); % Noise variance
errorRate = comm.ErrorRate; % Calculates BER

Run the encode-decode chain simulation for 10 frames and calculate the BER.

for frmIdx = 1:10
 msg = randi([0 1],frameLen,1);
 code = dvbrcs2TurboEncode(msg,r,permParams);
 modCode = qammod(code,4,[0 2 3 1], ...
 'InputType','bit', ...
 'UnitAveragePower',true); % QPSK Modulation
 receivedOut = awgn(modCode, snrdB);
 demodOut = qamdemod(receivedOut,4,[0 2 3 1], ...
 'OutputType','llr', ...
 'UnitAveragePower',true, ...
 'NoiseVariance',nVar); % QPSK Demodulation
 decoded = dvbrcs2TurboDecode(-1*demodOut,r, ...
 permParams);
 errorStats = errorRate(int8(msg),decoded);
end

Display the bit error rate.

fprintf('Error rate = %f\n',errorStats(1));

Error rate = 0.003500

fprintf('Number of errors detected = %f\n',errorStats(2));

2 Functions

2-242

Number of errors detected = 7.000000

fprintf('Total bits compared = %f\n',errorStats(3));

Total bits compared = 2000.000000

Input Arguments
code — Encoded soft bits
column vector

Encoded soft bits, specified as a column vector.
Data Types: double

r — Code rate
"1/3" | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

• "1/3"
• "1/2"
• "2/3"
• "3/4"
• "4/5"
• "5/6"
• "6/7"
• "7/8"

Data Types: char | string

permparams — Permutation control parameters
vector

Permutation control parameters that the function uses to interleave the input soft bits data, specified
as a vector of these five elements in order: P, Q0, Q1, Q2, and Q3. P must be in the range [9, 255], and
Q0, Q1, Q2, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to floor((inputmsglen x
r)/2). inputmsglen is the length of the input message, before encoding.
Data Types: double | uint8

numiter — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations, specified as a positive integer.
Data Types: double | uint8

 dvbrcs2TurboDecode

2-243

Output Arguments
decoded — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector.
Data Types: int8

References
[1] EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive

Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig | comm.TurboDecoder

Introduced in R2021b

2 Functions

2-244

pattern
Package: satcom.satellitescenario

Plot 3-D radiation pattern of antenna

Syntax
pat = pattern(tx)
pat = pattern(rx,freq)
pat = pattern(___ ,Name,Value)

Description
pat = pattern(tx) plots the 3-D radiation pattern of the antenna for each transmitter in vector
tx. The signal gain value (in dBi) in a particular direction determines the color of the pattern. The
function scales the pattern on the plot according to the Size name-value argument. The function
plots the pattern for the transmitter frequency as specified by the Frequency property of tx.

pat = pattern(rx,freq) plots the 3-D radiation pattern of the antenna for each receiver in
vector, rx with frequency freq.

pat = pattern(___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example,
'ColorMap','jet' specifies the jet colormap for coloring the pattern plot.

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.

startTime = datetime(2021,2,12,13,30,0);
stopTime = startTime + hours(5);
sampleTime = 60; %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);
gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat,"Frequency",3e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

 pattern

2-245

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

2 Functions

2-246

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

 pattern

2-247

Increase the visual size of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = "parula";

2 Functions

2-248

Visualize Radiation Pattern of Receiver Antenna on Satellite

Set up the satellite scenario.

sc = satelliteScenario;

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);
gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat,"Frequency",1e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

 pattern

2-249

Plot the radiation pattern of the receiver antenna.

freq = 30e9;
pat = pattern(rx,freq);

2 Functions

2-250

Increase the visual size and specify the transparency of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = 'autumn';

 pattern

2-251

Input Arguments
tx — Transmitter
scalar | vector

Transmitter object, specified as either a scalar or vector.

rx — Receiver
scalar | vector

Receiver object, specified as either a scalar or vector.

freq — Frequency to calculate radiation pattern
scalar | vector

Frequency to calculate radiation pattern, specified as a scalar or a vector.

• If freq is scalar, its value is applied to the pattern of all receivers in rx.
• If freq is vector, its length must equal to that of rx.

Each element in freq corresponds to the pattern of the antenna of the receiver in rx.
Data Types: double

2 Functions

2-252

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Size',1000 sets the size of the radiation pattern plot to 1,000 meters.

Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.
Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.
Data Types: double | char | string

Transparency — Transparency of the pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of 0 means the plot
is completely transparent, and a value of 1 means the plot is opaque.
Data Types: double

Resolution — Resolution of 3-D pattern
'high' (default) | 'medium' | 'low'

Resolution of the 3-D pattern, specified as 'low', 'medium', or 'high'. Use this argument to
control the visual quality of the pattern and time the function takes to plot the pattern. 'low'
corresponds to the fastest and least-detailed pattern.
Data Types: char | string

Viewer — Satellite Scenario Viewer to visualize satellite
row vector (default) | scalar | matrix

Satellite Scenario Viewer to visualize the satellite, specified as a scalar, row vector, or matrix of
satelliteScenarioViewer objects that are associated with the satellite scenario.

Output Arguments
pat — Radiation pattern visualization for transmitter or receiver
scalar | vector

Radiation pattern visualization for transmitter or receiver object, returned as either a scalar or
vector.

 pattern

2-253

See Also
Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021b

2 Functions

2-254

dvbrcs2BitRecover
Recover bits for DVB-RCS2 waveform

Syntax
[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar)

Description
[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar) recovers frame protocol
data unit (PDU), bits, and the frame PDU cyclic redundancy check (CRC) status, framePDUErr.
Input rxdata is the received complex in-phase quadrature (IQ) symbols in the form of bursts of a
Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
transmission. cfgrx is the recovery configuration object, dvbrcs2RecoveryConfig. nvar is the
noise variance estimate that the function uses to calculate soft bits.

The function supports demodulation and decoding of the turbo codes with linear modulation (TC-LM),
and spread spectrum and turbo codes with linear modulation (SS-TC-LM) transmission formats, with
all three PDU types (logon, control, and traffic), for reference and custom waveforms.

Examples

Recover PDU from DVB-RCS2 Reference Waveform

Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.WaveformID = 7;
wg.SamplesPerSymbol = 2;

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,"measured");

Create and then configure the DVB-RCS2 recovery configuration object.

 dvbrcs2BitRecover

2-255

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',0.2, ...
 'InputSamplesPerSymbol',sps, ...
 'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.

filtOut = rxFilter([rxIn; ...
 complex(zeros(span/2*sps,1))]);
rxSymb = filtOut(span+1:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10^(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0

fprintf("Number of bit errors = %d\n", sum(framePDU~=rxOut))

Number of bit errors = 0

Recover PDU from DVB-RCS2 Custom Waveform

Recover the frame PDU for a DVB-RCS2 custom waveform.

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;
wg.PayloadLengthInBytes = 115;
wg.MappingScheme = "8PSK";
wg.CodeRate = "2/3";
wg.PermutationParameters = [29 6 5 0 0];
wg.UniqueWord = "3ACF08B13076";

Get the characteristic information about the DVB-RCS2 waveform generator.

info(wg)

ans = struct with fields:
 BurstLength: 476
 PayloadLengthInBytes: 115
 MappingScheme: "8PSK"
 CodeRate: "2/3"
 PreambleLength: 8
 PostambleLength: 8
 PilotPeriod: 0

2 Functions

2-256

 PilotBlockLength: 1
 PermutationParameters: [29 6 5 0 0]
 UniqueWord: "3ACF08B13076"
 PilotSum: 0

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;
EsNodB = 9;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.IsCustomWaveform = true;
cfg.MappingScheme = wg.MappingScheme;
cfg.CodeRate = wg.CodeRate;
cfg.PermutationParameters = wg.PermutationParameters;

Get burst parameters from waveform generator info method.

burstParams = info(wg);
cfg.BurstLength = burstParams.BurstLength;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',0.2, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.

filtOut = rxFilter([rxIn; ...
 complex(zeros(span/2*sps,1))]);
rxSymb = filtOut(span+1:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10^(-EsNodB/10));
fprintf('Erroneous frame PDU = %d\n', pduErr)

Erroneous frame PDU = 0

fprintf('Number of bit errors = %d\n', sum(framePDU~=rxOut))

Number of bit errors = 0

 dvbrcs2BitRecover

2-257

Recover PDU from Burst Configuration Parameters

Recover the frame PDU for a DVB-RCS2 waveform with specified burst configuration parameters.

Set the burst configuration paramters.

Rsym = 1e6; % Symbol rate (1 Msps)
tSlot = 2.11e-3; % Burst time slot duration (2.11 ms)
preBurstGuardOffset = 20e-6; % 20 microsecond
waveId = 39; % Waveform ID

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.WaveformID = waveId; % QPSK 6/7

Compute the burst parameters in terms of symbols.

wg.PreBurstGuardLength = ceil(preBurstGuardOffset*Rsym);
params = info(wg);
burstPayLoadDuration = params.BurstLength/Rsym;
burstPostGuard = ceil((tSlot-preBurstGuardOffset-burstPayLoadDuration)*Rsym);
wg.PostBurstGuardLength = burstPostGuard;

Generate the frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;
EsNodB = 7;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.WaveformID = wg.WaveformID;

Initialize a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor', 0.20, ...
 'InputSamplesPerSymbol', sps, 'DecimationFactor', sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay

rxBurst = rxIn(wg.PreBurstGuardLength*sps+1:end-wg.PostBurstGuardLength*sps);
filtOut = rxFilter([rxBurst; ...
 complex(zeros(span/2*sps,1))]);
rxSymb = filtOut(span+1:end);

2 Functions

2-258

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut, pduErr] = dvbrcs2BitRecover(rxSymb, cfg, 10^(-EsNodB/10));
fprintf('Erroneous frame PDU = %d\n', pduErr)

Erroneous frame PDU = 0

fprintf('Number of bit errors = %d\n', sum(rxOut~=framePDU))

Number of bit errors = 0

Input Arguments
rxdata — Received complex IQ symbols
column vector

Received complex IQ symbols, specified as a column vector. rxdata must contain only one burst.

The type of waveform determines the length of rxdata.

• Reference waveform — For set values of the TransmissionFormat and WaveformID properties of
the dvbrcs2WaveformGenerator System object, the length of input rxdata must be equal to
the burst length parameter specified in ETSI EN 301 545-2 V1.2.1 (2014-11) Table A-1 and A-2 [1].

• Custom waveform — The length must be equal to the value of BurstLength property of the
dvbrcs2RecoveryConfig object.

Data Types: double
Complex Number Support: Yes

cfgrx — DVB-RCS2 recovery configuration object
dvbrcs2RecoveryConfig object

DVB-RCS2 recovery configuration object, specified as a dvbrcs2RecoveryConfig object. The
properties of this object specify the transmission parameters of the received waveform and the
decoding parameters for the recovery of the data.

nvar — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar. The function uses nvar as a scaling factor
to calculate the soft bits from the IQ symbols.

When you specify nvar as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.
Data Types: double

Output Arguments
bits — Recovered frame PDU data bits
column vector

Recovered frame PDU data bits, returned as a column vector.

 dvbrcs2BitRecover

2-259

Data Types: int8

framePDUErr — Frame PDU CRC status
true or 1 | false or 0

Frame PDU CRC status, returned as a numeric or logical 1 (true) or 0 (false). A value of false
indicates the frame is erroneous.
Data Types: logical

References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCS2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbrcs2RecoveryConfig | dvbrcs2WaveformGenerator

Introduced in R2021b

2 Functions

2-260

advance
Move simulation forward by one sample time

Syntax
isrunning = advance(sc)

Description
isrunning = advance(sc) moves the simulation forward by the amount of time specified by the
SampleTime property of the scenario sc.

Examples

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);
stopTime = startTime + days(0.5);
sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate',false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc,"gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

Obtain the satellite position histories.

p = states(sat);

AutoSimulate is false, so restart the scenario before adding a ground station.

restart(sc);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

 advance

2-261

while advance(sc)
end
intvls1 = accessIntervals(ac)

intvls1=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:40:50 13055 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:40:50 10008 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:40:50 6527.3 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:40:50 17841 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:40:50 9138.2 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:40:50 11314 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the simulation results.

v = satelliteScenarioViewer(sc,'ShowDetails',false);
play(sc);

2 Functions

2-262

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate = true;
intvls2 = accessIntervals(ac)

intvls2=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:48:06 13490 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:48:06 10444 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:48:06 6962.4 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:48:06 18276 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:48:06 9573.3 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:48:06 11749 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the scenario.

 advance

2-263

play(sc);

Input Arguments
sc — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object. The argument applies only if the
AutoSimulate property of the sc object is false.

Output Arguments
isrunning — Running status of satellite scenario simulation
true or 1 | false or 0

Running status of the satellite scenario simulation, returned as a logical 1 (true) or 0 (false). The
isrunning value is true until the scenario reaches the specified StopTime value.

See Also
Objects
satelliteScenario

Functions
satelliteScenarioViewer | play | satellite | groundStation | restart

2 Functions

2-264

Introduced in R2022a

 advance

2-265

restart
Restart simulation from beginning

Syntax
restart(sc)

Description
restart(sc) resets the satellite scenario sc to the initial start time.

Examples

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);
stopTime = startTime + days(0.5);
sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate',false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc,"gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

Obtain the satellite position histories.

p = states(sat);

AutoSimulate is false, so restart the scenario before adding a ground station.

restart(sc);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

2 Functions

2-266

while advance(sc)
end
intvls1 = accessIntervals(ac)

intvls1=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:40:50 13055 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:40:50 10008 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:40:50 6527.3 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:40:50 17841 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:40:50 9138.2 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:40:50 11314 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the simulation results.

v = satelliteScenarioViewer(sc,'ShowDetails',false);
play(sc);

 restart

2-267

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate = true;
intvls2 = accessIntervals(ac)

intvls2=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:48:06 13490 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:48:06 10444 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:48:06 6962.4 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:48:06 18276 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:48:06 9573.3 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:48:06 11749 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the scenario.

2 Functions

2-268

play(sc);

Input Arguments
sc — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object. The argument applies only if the
AutoSimulate property of the sc object is false.

The timeline and playback widgets on the open satellite scenario viewers that were previously made
available after calling the play function become unavailable for interaction.

See Also
Objects
satelliteScenario

Functions
satelliteScenarioViewer | play | satellite | groundStation | advance

Introduced in R2022a

 restart

2-269

Objects

3

ccsdsTCConfig
CCSDS TC configuration parameters

Description
The ccsdsTCConfig object creates a configuration object for Consultative Committee for Space
Data Systems (CCSDS) Telecommand (TC) using default and specified values. ccsdsTCConfig object
is configurable by using applicable “Properties” on page 3-2.

Creation

Syntax
cfg = ccsdsTCConfig
cfg = ccsdsTCConfig(Name,Value)

Description

cfg = ccsdsTCConfig creates a CCSDS TC configuration object using default properties.

cfg = ccsdsTCConfig(Name,Value) sets “Properties” on page 3-2 using one or more name-
value pairs. Enclose each property name in quotes. For example,
ccsdsTCConfig('DataFormat','CLTU','Modulation','BPSK') configures the CSSDS TC
configuration object with a communications link transmission unit data format and binary phase shift
keying (BPSK) modulation scheme.

Properties
DataFormat — Data formats used by PLOPs
"CLTU" (default) | "acquisition sequence" | "idle sequence"

Data formats used by physical layer operation procedures (PLOPs), specified as one of these options.

• "CLTU" — Communications link transmission unit (CLTU)
• "acquisition sequence"
• "idle sequence"

Data Types: char | string

ChannelCoding — Forward error correction coding
"BCH" (default) | "LDPC"

Forward error correction coding, specified as one of these options.

• "BCH" — Bose Chaudhuri Hocquenghem (BCH)
• "LDPC" — Low-density parity–check (LDPC)

3 Objects

3-2

Dependencies

To enable this property, set the DataFormat property to "CLTU".
Data Types: char | string

LDPCCodewordLength — LDPC codeword length
128 (default) | 512

LDPC codeword length, specified as 128 or 512.

Dependencies

To enable this property, set the ChannelCoding property to "LDPC".
Data Types: double

HasRandomizer — Flag to indicate randomization
1 or true (default) | 0 or false

Flag to indicate randomization on the bits in CLTU and on the fill data added prior to randomization,
specified as a logical value of 1 (true) or 0 (false). To indicate the presence of a randomizer in the
waveform, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "BCH".
Data Types: logical

HasTailSequence — Flag to indicate tail sequence in CLTU
1 or true (default) | 0 or false

Flag to indicate the tail sequence in CLTU, specified as a logical value of 1 (true) or 0 (false). To
indicate the presence of the tail sequence to delimit the end of a CLTU, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "LDPC" and the LDPCCodewordLength
property to 128.
Data Types: logical

Modulation — Modulation scheme
"PCM/PSK/PM" (default) | "PCM/PM/biphase-L" | "BPSK"

Modulation scheme used to generate the CCSDS TC waveform, in the form of baseband in-phase
quadrature (IQ) samples, specified as one of these options.

• "PCM/PSK/PM" — The line coded signal as per the pulse code modulation (PCM) format is phase
shift keying (PSK) modulated on a sine wave subcarrier and then phase modulated (PM) on a
residual carrier.

• "PCM/PM/biphase-L" — The biphase-L (Manchester) encoded data is phase modulated on a
residual carrier.

• "BPSK" — Suppressed carrier modulation by using non-return-to-zero (NRZ) data on the carrier.

For more details on these modulation schemes, see [3].

 ccsdsTCConfig

3-3

Data Types: char | string

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format, specified as one of these options. This property specifies the
PCM coding in the CCSDS TC waveform.

• "NRZ-L" — NRZ-level
• "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierFrequency — Sine wave subcarrier frequency
16000 (default) | 8000

Sine wave subcarrier frequency in Hertz, specified as 16000 or 8000. The subcarrier waveform is
used to PSK-modulate the NRZ data on the residual RF carrier.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SymbolRate — Symbol rate
4000 (default) | 2000 | 1000 | 500 | 250 | 125 | 62.5 | 31.25 | 15.625 | 7.8125

Symbol rate in coded symbols per second, specified as one of these options.

• 4000
• 2000
• 1000
• 500
• 250
• 125
• 62.5
• 31.25

3 Objects

3-4

• 15.625
• 7.8125

Note If you set SymbolRate to 4000 coded symbols per second, you must set the
SubcarrierFrequency property to 16000.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierWaveform — Waveform used to PSK-modulate NRZ data
"sine"

This property is read-only.

Waveform used to PSK-modulate the NRZ data, returned as "sine". CCSDS TC supports only sine-
wave subcarriers.
Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

Object Functions

Specific to This Object
ccsdsTCWaveform Generate CCSDS TC waveform

Examples

Create CCSDS TC Object

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) configuration
object. Specify the properties of the object.

cfg = ccsdsTCConfig;
cfg.ChannelCoding = "LDPC";
cfg.HasTailSequence = false;
cfg.PCMFormat = "NRZ-M";

 ccsdsTCConfig

3-5

Display the properties of the CCSDS TC object.

disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "LDPC"
 LDPCCodewordLength: 128
 HasTailSequence: 0
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-M"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

c = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
 bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
 waveform = ccsdsTCWaveform(bits,cfg);

3 Objects

3-6

 c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

[3] Nguyen, T.M., W.L. Martin, and Hen-Geul Yeh. "Required Bandwidth, Unwanted Emission, and
Data Power Efficiency for Residual and Suppressed Carrier Systems - a Comparative Study."
IEEE transactions on electromagnetic compatibility 37, no. 1 (February 1995): 34-50. https://
doi.org/10.1109/15.350238.

 ccsdsTCConfig

3-7

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Properties LDPCCodewordLength and ChannelCoding must be provided as compile-time constant
inputs in code generation. Use coder.Constant (MATLAB Coder) object to convert the input
variable to a constant during code generation.

See Also
Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTMWaveformGenerator

Introduced in R2021a

3 Objects

3-8

p618SiteDiversityConfig
Create P.618 site diversity configuration object

Description
The p618SiteDiversityConfig object sets P.618 site diversity configuration parameters required
for the calculation of outage probability due to rain attenuation, as defined in the ITU-R P.618
recommendation [1].

Creation

Syntax
cfgSD = p618SiteDiversityConfig
cfgSD = p618SiteDiversityConfig(Name,Value)

Description

cfgSD = p618SiteDiversityConfig creates a P.618 site diversity configuration object with
default property values.

cfgSD = p618SiteDiversityConfig(Name,Value) specifies “Properties” on page 3-9 using
one or more name-value pair arguments. Enclose each property name in quotes. For example,
p618SiteDiversityConfig('Frequency',14.25e9,'ElevationAngle',[52.4099 52.4852])
configures a P.618 site diversity configuration object with a 14.25 GHz signal frequency and an
elevation angle for two sites as [52.4099 52.4852].

Properties
Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55e9]

Signal frequency in Hz, specified as a scalar in the range [1e9, 55e9].
Data Types: double | single

ElevationAngle — Elevation angle of two sites
[52.4099 52.4852] (default) | two-element vector of values in the range [0, 90]

Elevation angle of the two sites in degrees, specified as a two-element vector of values in the range
[0, 90].
Data Types: double | single

Latitude — Latitude of two sites
[25.768 25.463] (default) | two-element vector of values in the range [-90, 90]

 p618SiteDiversityConfig

3-9

Latitude of the two sites in degrees, specified as a two-element vector of values in the range [-90, 90].
A positive value corresponds to a North latitude, and a negative value corresponds to a South
latitude.
Data Types: double | single

Longitude — Longitude of two sites
[-80.205 -80.486] (default) | two-element vector of values in the range [-180, 180]

Longitude of the two sites in degrees, specified as a two-element vector of values in the range [-180,
180]. A positive value corresponds to East longitude, and a negative value corresponds to West
longitude.
Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle for two sites
[0 0] (default) | two-element vector of values in the range [-90, 90]

Polarization tilt angle for the two sites in degrees, specified as a two-element vector of values in the
range [-90, 90].
Data Types: double | single

SiteDistance — Separation between two sites
44.0256 (default) | positive scalar

Separation between the two sites in km, specified as a positive scalar.
Data Types: double | single

AttenuationThreshold — Attenuation threshold on two links
[9 3] (default) | two-element vector

Attenuation threshold on the two links in dB, specified as a two-element vector. The attenuation
threshold on an earth space link is the maximum allowed attenuation on the path. Any attenuation
value above this property value is considered an outage in the link.
Data Types: double | single

Object Functions

Specific to This Object
p618SiteDiversityOutage Calculate outage probability due to rain attenuation with site diversity

Examples

Create P.618 Site Diversity Configuration Object

Create a default P.618 site diversity configuration object.

cfg = p618SiteDiversityConfig;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

3 Objects

3-10

cfg.PolarizationTiltAngle = [-90 90];
cfg.SiteDistance = 50;
cfg.AttenuationThreshold = [9 9];

Set the direction of each earth station.

cfg.Latitude = [30 60]; % North direction
cfg.Longitude = [120 150]; % East direction

Display the properties of the configuration object.

disp(cfg);

 p618SiteDiversityConfig with properties:

 Frequency: 1.4500e+10
 ElevationAngle: [52.4099 52.4852]
 Latitude: [30 60]
 Longitude: [120 150]
 PolarizationTiltAngle: [-90 90]
 SiteDistance: 50
 AttenuationThreshold: [9 9]

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

 p618SiteDiversityConfig

3-11

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

outage = 0.0338

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
p618Config

Functions
p618PropagationLosses | p618SiteDiversityOutage

Introduced in R2021a

3 Objects

3-12

p618Config
Create P.618 configuration object

Description
The p618Config object sets the P.618 configuration parameters required for the calculation of the
Earth-space propagation losses, cross-polarization discrimination, and sky noise temperature, as
defined in the ITU-R P.618 recommendation [1].

Creation

Syntax
cfgP618 = p618Config
cfgP618 = p618Config(Name,Value)

Description

cfgP618 = p618Config creates a P.618 configuration object with default property values.

cfgP618 = p618Config(Name,Value) specifies “Properties” on page 3-13 using one or more
name-value pair arguments. Enclose each property name in quotes. For example,
p618Config('GasAnnualExceedance',10,'AntennaEfficiency',0.65) configures a P.618
configuration object with 10% average annual time percentage of excess for gaseous attenuation and
0.65 antenna efficiency.

Properties
Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55e9]

Signal frequency in Hz, specified as a scalar in the range [1e9, 55e9].
Data Types: double | single

ElevationAngle — Elevation angle
31.0769 (default) | scalar in the range [5, 90]

Elevation angle in degrees, specified as a scalar in the range [5, 90].
Data Types: double | single

Latitude — Earth station latitude
51.5000 (default) | scalar in the range [-90, 90]

Earth station latitude in degrees, specified as a scalar in the range [-90, 90]. A positive value
corresponds to a North latitude, and a negative value corresponds to a South latitude.
Data Types: double | single

 p618Config

3-13

Longitude — Earth station longitude
-0.1400 (default) | scalar in the range [-180, 180]

Earth station longitude in degrees, specified as a scalar in the range [-180, 180]. A positive value
corresponds to East longitude, and a negative value corresponds to West longitude.
Data Types: double | single

GasAnnualExceedance — Average annual time percentage of excess for gaseous
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the gaseous attenuation, specified as a scalar in the
range [0.1, 99]. This property calculates the gaseous attenuation, which satisfies the exceedance
condition, in terms of the percentage of an average year.

Note The fraction of time during which a preselected threshold is exceeded in an average year is
referred to as the annual time percentage of excess.

Data Types: double | single

CloudAnnualExceedance — Average annual time percentage of excess for cloud
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the cloud attenuation, specified as a scalar in the range
[0.1, 99]. This property calculates the cloud attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.
Data Types: double | single

RainAnnualExceedance — Average annual time percentage of excess for rain attenuation
1 (default) | scalar in the range [0.001, 5]

Average annual time percentage of excess for the rain attenuation, specified as a scalar in the range
[0.001, 5]. This property calculates the rain attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.
Data Types: double | single

ScintillationAnnualExceedance — Average annual time percentage of excess for
tropospheric scintillation
1 (default) | scalar in the range [0.01, 50]

Average annual time percentage of excess for the tropospheric scintillation, specified as a scalar in
the range [0.01, 50]. This property calculates the tropospheric scintillation, which satisfies the
exceedance condition, in terms of the percentage of an average year.
Data Types: double | single

TotalAnnualExceedance — Average annual time percentage of excess for total attenuation
1 (default) | scalar in the range [0.001, 50]

3 Objects

3-14

Average annual time percentage of excess for the total attenuation, specified as a scalar in the range
[0.001, 50]. This property calculates the total attenuation, which satisfies the exceedance condition,
in terms of the percentage of an average year.
Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle
0 (default) | scalar in the range [-90, 90]

Polarization tilt angle in degrees, specified as a scalar in the range [-90, 90].
Data Types: double | single

AntennaDiameter — Physical diameter of earth station antenna
1 (default) | positive scalar

Physical diameter of the earth station antenna in meters, specified as a positive scalar.
Data Types: double | single

AntennaEfficiency — Antenna efficiency of earth station antenna
0.5 (default) | positive scalar

Antenna efficiency of the earth station antenna, specified as a positive scalar.
Data Types: double | single

Object Functions

Specific to This Object
p618PropagationLosses Calculate Earth-space propagation losses, cross-polarization

discrimination, and sky noise temperature

Examples

Create P.618 Configuration Object

Create a default P.618 configuration object.

cfg = p618Config;

Specify the signal frequency as 25 GHz, elevation angle as 45 degrees, and antenna efficiency as
0.65. Set the time percentage of excess for the total attenuation per annum as 0.001.

cfg.Frequency = 25e9;
cfg.ElevationAngle = 45;
cfg.AntennaEfficiency = 0.65;
cfg.TotalAnnualExceedance = 0.001;

Set the earth station direction.

cfg.Latitude = 30; % North direction
cfg.Longitude = 120; % East direction

Display the properties of the configuration object.

 p618Config

3-15

disp(cfg)

 p618Config with properties:

 Frequency: 2.5000e+10
 ElevationAngle: 45
 Latitude: 30
 Longitude: 120
 GasAnnualExceedance: 1
 CloudAnnualExceedance: 1
 RainAnnualExceedance: 1
 ScintillationAnnualExceedance: 1
 TotalAnnualExceedance: 1.0000e-03
 PolarizationTiltAngle: 0
 AntennaDiameter: 1
 AntennaEfficiency: 0.6500

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a default P.618 configuration object.

cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.

[pl,xpd,tsky] = p618PropagationLosses(cfg)

pl = struct with fields:
 Ag: 0.2269
 Ac: 0.4552

3 Objects

3-16

 Ar: 6.7981
 As: 0.2633
 At: 15.6091

xpd = 32.8876

tsky = 267.4689

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat','file');
p837 = exist('p837.mat','file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];
if ~all(matFiles)
 if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
 else
 untar('ITURDigitalMaps.tar.gz');
 end
 addpath(cd);
end

Create a P.618 configuration object that occupies a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.

pl = p618PropagationLosses(cfg,'RainRate',1,'StationHeight',0.75)

pl = struct with fields:
 Ag: 0.7996
 Ac: 0.8793
 Ar: 0.0177
 As: 0.3187
 At: 1.7514

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 p618Config

3-17

See Also
Objects
p618SiteDiversityConfig

Functions
p618PropagationLosses | p618SiteDiversityOutage

Introduced in R2021a

3 Objects

3-18

satelliteScenario
Satellite scenario

Description
The satelliteScenario object represents a 3D arena consisting of satellites, ground stations, and
the interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and the ground stations, and visualize the
results.

Creation

Syntax
sc = satelliteScenario
sc = satelliteScenario(startTime,stopTime,sampleTime)
sc = satelliteScenario(___ ,'AutoSimulate'=false)

Description

sc = satelliteScenario creates a default satellite scenario object.

sc = satelliteScenario(startTime,stopTime,sampleTime) sets the StartTime,
StopTime, and SampleTime properties to the values of startTime, stopTime, and sampleTime,
respectively.

sc = satelliteScenario(___ ,'AutoSimulate'=false) sets the AutoSimulate property to
a specified value.

Properties
StartTime — Start time of satellite scenario simulation in UTC
datetime scalar

Start time of the satellite scenario simulation in UTC, specified as a datetime scalar. The default
StartTime is the current UTC time if no satellites are present in the scenario. Otherwise, it is the
earliest value from the current UTC time, the epoch defined in the TLE files, reference time deduced
in SEM files, or initial time in the timetable and timeseries. If the StartTime, StopTime, or
SampleTime properties are explicitly specified, the StartTime property no longer updates with
further additions of satellites.

When the AutoSimulate property is false, you can modify the StartTime property only when the
SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.
Data Types: datetime

 satelliteScenario

3-19

StopTime — Stop time of satellite scenario simulation in UTC
datetime scalar

Stop time of the satellite scenario simulation in UTC, specified as a datetime scalar. The default
StopTime is StartTime + longest orbital period among the satellites in the scenario. If no satellites
are added to the scenario, the default StopTime is the same as the default StartTime. If the
StartTime, StopTime, or SampleTime properties are explicitly specified, the StopTime property
no longer updates with further additions of satellites.

When the AutoSimulate property is false, you can modify the StopTime property only when the
SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.
Data Types: datetime

SampleTime — Sample time of satellite scenario simulation
scalar

Sample time of the satellite scenario simulation, specified as a real-valued scalar. The default sample
time is set such that there are 100 samples between StartTime and StopTime. If the default
StartTime and StopTime are the same, which is the case when no satellites are added to the
scenario, the default SampleTime is 60 seconds. If the StartTime, StopTime, or SampleTime
properties are explicitly specified, the SampleTime property no longer updates with further additions
of satellites.

When the AutoSimulate property is false, you can modify the SampleTime property only when
the SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.
Data Types: double

SimulationTime — Simulation time of satellite scenario in UTC
current UTC time (default) | datetime scalar

This property is read-only.

Current simulation time of the satellite scenario simulation in UTC, specified as a datetime scalar.
Call the restart function to reset the time to StartTime.

Dependencies

To enable this property, set AutoSimulate to false.
Data Types: datetime

SimulationStatus — Simulation status
'NotStarted' | 'InProgress' | 'Completed'

This property is read-only.

Simulation status of the satellite scenario, specified as one of the following:

• 'NotStarted' — No call to the advance function has been made
• 'InProgress' — Simulation is running
• 'Completed' — Simulation is finished

3 Objects

3-20

The simulation starts when the first call to the advance function is made. The simulation continues
until one of the following occurs:

• The simulation reaches the StopTime.
• A new asset is added to the satellite scenario.
• Certain properties of the asset (satellites, ground stations, gimbals, conical sensors, and so on)

have been modified, such as MountingLocation or MountingAngles. Refer to the properties to
determine if modifying them can stop the simulation.

Call the restart function to restart the simulation, erase the simulation data, and set
SimulationStatus to NotStarted.

Dependencies

To enable this property, set AutoSimulate to false.

AutoSimulate — Option to simulate satellite scenario automatically
true or 1 | false or 0

Option to simulate the satellite scenario automatically, specified as one of these numeric or logical
values.

• 1 (true) — Simulate the satellite scenario automatically on any call to an analysis function, such
as states or accessIntervals.

• 0 (false)— Simulate the satellite scenario only by calling the advance function.

Changing the AutoSimulate value erases the previous simulation data.
Data Types: double

Satellites — Satellites in the scenario
row vector of Satellite objects

This property is read-only.

Satellites in the scenario, returned as a vector of Satellite objects. To add a Satellite object to
the satellite scenario, use the satellite object function.

GroundStations — Ground stations in scenario
row vector of GroundStation objects

Ground stations in the scenario, returned as a row vector of GroundStation objects. To create a
GroundStation object and add it to the satellite scenario, see the groundStation object function.

Autoshow — Option to automatically show graphics
true or 1 (default) | false or 0

Option to automatically show graphics, specified as a logical 1 (true) or 0 (false). This property
determines if entities added to the scenario are automatically shown in an open
satelliteScenarioViewer window.

Object Functions
groundStation Add ground station to satellite scenario
satellite Add satellites to satellite scenario

 satelliteScenario

3-21

satelliteScenarioViewer Create viewer for satellite scenario
advance Move simulation forward by one sample time
restart Restart simulation from beginning
play Play satellite scenario simulation results on viewer

Examples

Create Satellite Scenario with Custom Start and Stop Times

Specify the start time in the current time zone as yesterday. The simulation lasts for half a day.

startTime = datetime("yesterday","TimeZone","local");
stopTime = startTime + days(0.5);

Specify the sample time as 60 seconds. Create a satellite scenario object, specifying the start time,
stop time, and sample time.

sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Feb-2022 05:00:00
 StopTime: 25-Feb-2022 17:00:00
 SampleTime: 60
 AutoSimulate: 1
 Satellites: [1x0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
 Viewers: [0x0 matlabshared.satellitescenario.Viewer]
 AutoShow: 1

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

3 Objects

3-22

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

 satelliteScenario

3-23

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);
stopTime = startTime + days(0.5);
sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate',false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc,"gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

3 Objects

3-24

Obtain the satellite position histories.

p = states(sat);

AutoSimulate is false, so restart the scenario before adding a ground station.

restart(sc);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

while advance(sc)
end
intvls1 = accessIntervals(ac)

intvls1=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:40:50 13055 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:40:50 10008 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:40:50 6527.3 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:40:50 17841 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:40:50 9138.2 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:40:50 11314 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the simulation results.

v = satelliteScenarioViewer(sc,'ShowDetails',false);
play(sc);

 satelliteScenario

3-25

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate = true;
intvls2 = accessIntervals(ac)

intvls2=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ________ ___________________ ______________ ____________________ ____________________ ________ __________ ________

 "PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:15:47 21322 NaN NaN
 "PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:48:06 13490 NaN NaN
 "PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:38:53 6527.3 NaN NaN
 "PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:42:49 17406 NaN NaN
 "PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:11:11 15665 NaN NaN
 "PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:48:06 10444 NaN NaN
 "PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:48:06 6962.4 NaN NaN
 "PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:48:06 18276 NaN NaN
 "PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:27:00 22628 NaN NaN
 "PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:19:45 24369 NaN NaN
 "PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:47:27 17841 NaN NaN
 "PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:48:06 9573.3 NaN NaN
 "PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:59:58 5221.8 NaN NaN
 "PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:39:32 23063 NaN NaN
 "PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:48:06 11749 NaN NaN
 "PRN:13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:50:44 10008 NaN NaN
 ⋮

Visualize the scenario.

3 Objects

3-26

play(sc);

Tips
• When saving the satellite scenario, either save the entire workspace containing the scenario

object or save the scenario object itself.

See Also
Objects
satellite | satelliteScenarioViewer

Functions
play | show | hide | advance | restart | access | groundStation

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 satelliteScenario

3-27

skyplot
Plot satellite azimuth and elevation data

Syntax
skyplot(azdata,eldata)
skyplot(azdata,eldata,labeldata)
skyplot(status)
skyplot(___ ,Name,Value)

skyplot(parent, ___)
h = skyplot(___)

Description
skyplot(azdata,eldata) creates a sky plot using the azimuth and elevation data specified as
vectors in degrees. Azimuth angles are measured in degrees, clockwise-positive from the North
direction. Elevation angles are measured from the horizon line with 90 degrees being directly up. For
details about the sky plot figure elements, see “Main Sky Plot Elements” on page 3-34.

skyplot(azdata,eldata,labeldata) specifies data labels as a string array with elements
corresponding to each data point in the azdata and eldata inputs.

skyplot(status) specifies the azimuth and elevation data in a structure with fields
SatelliteAzimuth and SatelliteElevation.

skyplot(___ ,Name,Value) specifies options using one or more name-value arguments in addition
to the input arguments in previous syntaxes. The name-value arguments are properties of the
SkyPlotChart object. For a list of properties, see SkyPlotChart Properties.

skyplot(parent, ___) creates the sky plot in the figure, panel, or tab specified by parent.

h = skyplot(___) returns the sky plot as a SkyPlotChart object, h. Use h to modify the
properties of the chart after creating it. For a list of properties, see SkyPlotChart Properties.

Examples

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.

gnss = gnssSensor;

Specify the position and velocity of the sensor. Simulate the sensor readings and get status from
visible satellites. Store the azimuth and elevation angles as vectors.

pos = [0 0 0];
vel = [0 0 0];
[~, ~, status] = gnss(pos, vel);

3 Objects

3-28

satAz = status.SatelliteAzimuth;
satEl = status.SatelliteElevation;

Plot the satellite postions.

skyplot(satAz,satEl)

Plot Series of Satellite Positions Over Time

Animate the trajectory of satellite positions over time from a GNSS sensor.

Initialize the sky plot figure. Specify the relevant time-stepping information.

skyplotHandle = skyplot(0,0);

 skyplot

3-29

numHours = 12;
dt = 100;
numSeconds = numHours * 60 * 60;
numSimSteps = numSeconds/dt;

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.

gnss = gnssSensor('SampleRate', 1/dt);

Iterate through the time steps and do the following:

• Simulate the sensor readings. Specify the zero postion and velocity for the stationary sensor.
• Store the azimuth and elevation angles as vectors.
• Set the AzimuthData and ElevationData properties of the SkyPlotChart handle directly.

for i = 1:numSimSteps

 [~, ~, status] = gnss([0 0 0],[0 0 0]);

 satAz = status.SatelliteAzimuth;
 satEl = status.SatelliteElevation;

 set(skyplotHandle,'AzimuthData',satAz,'ElevationData',satEl);

 drawnow
end

3 Objects

3-30

View Satellite Positions For Different Groups

Load the azimuth and elevation data from a logfile generated by an Adafruit® GPS satellite sensor.
The data provided in this example contains the azimuth and elevation of each satellite and the
pseudorandom noise (PRN) codes. Store these values as vectors.

load('gpsHWInfo','hwInfo')
satAz = hwInfo.SatelliteAzimuths;
satEl = hwInfo.SatelliteElevations;
prn = hwInfo.SatellitePRNs;

Separate the satellites based on the PRN codes. To correlate each position with a group, create a
categorical array. For this set of satellites, only the ones with PRNs less than 32 are used in the
positioning solution.

isUnused = (prn > 32);
group = categorical(isUnused,[false true],["Used in Positioning Solution" "Unused"]);

Visualize the satellites and specify the categorical groups in the GroupData name-value argument.
Specify the PRN as the label for each point. Show the legend.

skyplot(satAz,satEl,prn,GroupData=group)
legend('Used','Unused')

 skyplot

3-31

Input Arguments
azdata — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Azimuth angles are measured in degrees, clockwise-
positive from the North direction.
Example: [25 45 182 356]
Data Types: double

eldata — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Elevation angles are measured from the horizon line
with 90 degrees being directly up.
Example: [45 90 27 74]
Data Types: double

labeldata — Labels for visible satellite positions
n-element string array

3 Objects

3-32

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
Example: ["G1" "G11" "G7" "G3"]
Data Types: string

status — Satellite status
structure array

Satellite status, specified as a structure array with fields SatelliteAzimuth and
SatelliteElevation. Typically, this status structure comes from a gnssSensor object, which
simulates satellite positions and velocities.
Example: gnss = gnssSensor; [~,~,status] = gnss(position,velocity)
Data Types: struct

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Output Arguments
h — Sky plot chart
SkyplotChart object

Sky plot chart, returned as a SkyplotChart object, which is a standalone visualization on page 3-
34. Use h to set properties on the sky plot chart. For more information, see SkyPlotChart Properties
(Navigation Toolbox).

 skyplot

3-33

More About
Main Sky Plot Elements

The main elements of the figure are:

• Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise-positive from the North direction.

• Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
from the horizon line with 90 degrees being directly up.

• Labels — Specified by the labeldata input argument as a string array with an element for each
point in the azdata and eldata vectors.

• Groups — Specified by the GroupData property, a categorical array defines the group for each
satellite position.

Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

3 Objects

3-34

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

See Also
Functions
polarscatter

Properties
SkyPlotChart Properties (Navigation Toolbox)

Objects
gnssSensor | nmeaParser

Introduced in R2021a

 skyplot

3-35

SkyPlotChart Properties
Sky plot chart appearance and behavior

Description
The SkyPlotChart properties control the appearance of a sky plot chart generated using the
skyplot function. To modify the chart appearance, use dot notation on the SkyPlotChart object:

h = skyplot;
h.AzimuthData = [45 120 295];
h.ElevationData = [10 45 60];
h.Labels = ["G1" "G4" "G11"];

Properties
Sky Plot Properties

AzimuthData — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured in degrees, clockwise-positive
from the North direction.
Example: [25 45 182 356]
Data Types: double

ElevationData — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured from the horizon line with 90
degrees being directly up.
Example: [45 90 27 74]
Data Types: double

LabelData — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
Example: ["G1" "G11" "G7" "G3"]
Data Types: string

GroupData — Group for each satellite position
categorical array

Group for each satellite position, specified as a categorical array. Each group has a different color
label defined by the ColorOrder property.

3 Objects

3-36

Example: [GPS GPS Galileo Galileo]
Data Types: double

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. This property defines the palette of
colors MATLAB uses to create plot objects such as Line, Scatter, and Bar objects. Each row of the
array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the
intensities of the red, green, and blue components of a color. The intensities must be in the range [0,
1]. This table lists the default colors.

Colors ColorOrder Matrix

 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

MATLAB assigns colors to objects according to their order of creation. For example, when plotting
lines, the first line uses the first color, the second line uses the second color, and so on. If there are
more lines than colors, then the cycle repeats.

You can also set the color order using the colororder function.

Label Properties

LabelFontSize — Font size of labels
scalar numeric value

Font size of labels, specified as a scalar numeric value. The default font depends on the specific
operating system and locale.
Example: h = skyplot(__,'LabelFontSize',12)
Example: h.LabelFontSize = 12

LabelFontSizeMode — Selection mode for font size of labels
'auto' (default) | 'manual'

Selection mode for the font size of labels, specified as one of these values:

• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the default
size, the font size can scale down to improve readability and layout.

• 'manual' — Font size specified manually. MATLAB does not scale the font size as the axes size
changes. To specify the font size, set the LabelFontSize property.

 SkyPlotChart Properties

3-37

Chart Properties

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the SkyPlotChart object handle in the Children property of the parent, specified as
one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

3 Objects

3-38

This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south',
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Marker Properties

MarkerEdgeAlpha — Marker edge transparency
1 (default) | scalar in range [0,1] | 'flat'

Marker edge transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

To set the edge transparency to a different value for each point in the plot, set the AlphaData
property to a vector the same size as the XData property, and set the MarkerEdgeAlpha property to
'flat'.

MarkerEdgeColor — Marker outline color
'flat' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]. For example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

 SkyPlotChart Properties

3-39

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceAlpha — Marker face transparency
0.6 (default) | scalar in range [0,1] | 'flat'

Marker face transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are partially transparent.

To set the marker face transparency to a different value for each point, set the AlphaData property
to a vector the same size as the XData property, and set the MarkerFaceAlpha property to 'flat'.

MarkerFaceColor — Marker fill color
'flat' (default) | 'auto' | 'none' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'flat' option uses the CData values. The 'auto' option uses the same
color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

3 Objects

3-40

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSizeData — Marker size
100 (default) | positive scalar | vector of positive values

Marker size, specified as a positive scalar or vector of positive values in points, where one point =
1/72 of an inch. If specified as a vector, the vector must be of the same length as AzimuthData.

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

 SkyPlotChart Properties

3-41

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and location
[0 0 1 1] (default) | four-element vector

Outer size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The outer position
includes the colorbar, title, and axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include the skyplot cells, plus
a margin for the surrounding text and colorbar.

The default value of [0 0 1 1] covers the whole interior of the container. The units are normalized
relative to the size of the container. To change the units, set the Units property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

InnerPosition — Inner size and location
[0.1300 0.1100 0.7750 0.8114] (default) | four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The inner position
does not include the colorbar, title, or axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include only the skyplot cells.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Inner size and location
four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. This property is
equivalent to the InnerPosition property.

3 Objects

3-42

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value argument during object creation, you must set the Units
property before specifying the properties that you want to use these units, such as OuterPosition.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the skyplot.
• 'off' — Hide the skyplot without deleting it. You can still access the properties of an invisible

SkyPlotChart object.

 SkyPlotChart Properties

3-43

See Also
Functions
skyplot | polarscatter

Objects
gnssSensor | nmeaParser

Introduced in R2021a

3 Objects

3-44

Satellite
Satellite object belonging to satellite scenario

Description
Satellite defines a satellite object belonging to a satellite scenario.

Creation
You can create Satellite objects using the satellite function of satelliteScenario.

Properties
Name — Satellite name
"Satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Satellite is added, specify Name as a string scalar or a character vector.
• If multiple Satellites are added, specify Name as a string scalar, character vector, string vector or a

cell array of character vectors. All Satellites added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of Satellites being added. Each Satellite is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the Satellites added by the Satellite object function.
Data Types: char | string

ID — Satellite ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Satellite ID assigned by the simulator, specified as a positive scalar.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Satellite, specified as a row vector of conical sensors.

 Satellite

3-45

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the Satellite, specified as the comma-separated pair consisting of 'Gimbals'
and a row vector of Gimbal objects.

Transmitters — Transmitters attached to Satellite
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Satellite, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Access analysis objects, specified as a row vector of Access objects.

GroundTrack — Ground track of the Satellite
row vector of GroundTrack objects

You can set this property only when calling groundTrack. After you call groundTrack, this property
is read-only.

Ground track of the Satellite, specified as a row vector of GroundTrack objects.

Orbit — Orbit graphic
Orbit object

Orbit object parameters for a satellite, specified as an orbit object. Only these object properties are
relevant for this function.

LineColor — Color of orbit
[1,0,0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Color of the orbit, specified as an RGB triplet, hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

3 Objects

3-46

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineWidth — Visual width of orbit
1 (default) | scalar in the range (0, 10)

Visual width of orbit in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

VisibilityMode — Visibility mode of orbit graphic
'inherit' (default) | 'manual'

 Satellite

3-47

Visibility mode of orbit graphic, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" | "sdp4" | "two-body-keplerian" | "ephemeris" | "gps"

This property is read-only.

Set OrbitPropagator on satellite object creation.

Name of the orbit propagator used for propagating the satellite position and velocity, specified as
"sgp4", "sdp4", "two-body-keplerian", "ephemeris", or "gps". The value depends on how
you specify the satellite.

• Timetable, table, timeseries, or tscollection — OrbitPropagator is "ephemeris".
• SEM almanac file — OrbitPropagator can be any value except "ephemeris". The initialization

is performed using the "gps" orbit propagator.
• TLE file — OrbitPropagator can be "two-body-keplerian", "sgp4", or "sdp4". If the

orbital period is less than 225 minutes, the initialization is performed using "sgp4". Otherwise,
the initialization is performed using "sdp4".

• Keplerian elements — OrbitPropagator can be "two-body-keplerian", "sgp4", or
"sdp4".

If the satellite is initialized using a timetable, table, timeseries object, or tscollection object,
the default propagator is "ephemeris". If the initialization is performed using a SEM almanac file,
the default propagator is "gps". Otherwise, if the orbital period is less than 225 minutes, the default
propagator is "sgp4", else "sdp4".

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite automatically selects "ephemeris" orbit propagator.

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3 Objects

3-48

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of Satellite label visibility
true or 1 (default) | false or 0

State of Satellite label visibility, specified as a comma-separated pair consisting of 'ShowLabel' and
numerical or logical value of 1 (true) or 0 (false).
Data Types: logical

LabelFontColor — Font color of Satellite label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the Satellitelabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 Satellite

3-49

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LabelFontSize — Font size of Satellite label
15 (default) | positive scalar less than 30

Font size of the Satellite label, specified as a comma-separated pair consisting of 'LabelFontSize'
and a positive scalar less than 30.

Object Functions
access Add access analysis objects to satellite scenario
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame

3 Objects

3-50

conicalSensor Add conical sensor to satellite scenario
gimbal Add gimbal to satellite or ground station
groundTrack Add ground track object to satellite in scenario
orbitalElements Orbital elements of satellites in scenario
pointAt Specify the target at which the satellite is pointed
receiver Add receiver to satellite scenario
transmitter Add transmitter to satellite scenario
states Obtain position and velocity of satellite
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples

Visualize Line of Sight Between Two Satellites

Create a satellite scenario object.

startTime = datetime(2020,5,5,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite from a TLE file to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat1 = satellite(sc,tleFile,"Name","Sat1")

sat1 =
 Satellite with properties:

 Name: Sat1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sdp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a satellite from Keplerian elements to the scenario and specify its orbit propagator to be "two-
body-keplerian".

semiMajorAxis = 6878137; %m
eccentricity = 0;
inclination = 20; %degrees
rightAscensionOfAscendingNode = 0; %degrees
argumentOfPeriapsis = 0; %degrees

 Satellite

3-51

trueAnomaly = 0; %degrees
sat2 = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","Sat2")

sat2 =
 Satellite with properties:

 Name: Sat2
 ID: 2
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: two-body-keplerian
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add access analysis between the two satellites.

ac = access(sat1,sat2);

Determine the times when there is line of sight between the two satellites.

accessIntervals(ac)

ans=15×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 ______ ______ ______________ ____________________ ____________________ ________ __________ ________

 "Sat1" "Sat2" 1 05-May-2020 00:09:00 05-May-2020 01:08:00 3540 1 1
 "Sat1" "Sat2" 2 05-May-2020 01:50:00 05-May-2020 02:47:00 3420 1 1
 "Sat1" "Sat2" 3 05-May-2020 03:45:00 05-May-2020 04:05:00 1200 1 1
 "Sat1" "Sat2" 4 05-May-2020 04:32:00 05-May-2020 05:26:00 3240 1 1
 "Sat1" "Sat2" 5 05-May-2020 06:13:00 05-May-2020 07:10:00 3420 1 1
 "Sat1" "Sat2" 6 05-May-2020 07:52:00 05-May-2020 08:50:00 3480 1 1
 "Sat1" "Sat2" 7 05-May-2020 09:30:00 05-May-2020 10:29:00 3540 1 1
 "Sat1" "Sat2" 8 05-May-2020 11:09:00 05-May-2020 12:07:00 3480 1 2
 "Sat1" "Sat2" 9 05-May-2020 12:48:00 05-May-2020 13:46:00 3480 2 2
 "Sat1" "Sat2" 10 05-May-2020 14:31:00 05-May-2020 15:27:00 3360 2 2
 "Sat1" "Sat2" 11 05-May-2020 17:12:00 05-May-2020 18:08:00 3360 2 2
 "Sat1" "Sat2" 12 05-May-2020 18:52:00 05-May-2020 19:49:00 3420 2 2
 "Sat1" "Sat2" 13 05-May-2020 20:30:00 05-May-2020 21:29:00 3540 2 2
 "Sat1" "Sat2" 14 05-May-2020 22:08:00 05-May-2020 23:07:00 3540 2 2
 "Sat1" "Sat2" 15 05-May-2020 23:47:00 06-May-2020 00:00:00 780 2 2

Visualize the line of sight between the satellites.

play(sc);

3 Objects

3-52

Visualize GPS Constellation

Set up the satellite scenario.

startTime = datetime(2021,8,5);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add satellites to the scenario from a SEM almanac file.

sat = satellite(sc,"gpsAlmanac.txt","OrbitPropagator","gps");

Visualize the GPS constellation.

v = satelliteScenarioViewer(sc);

 Satellite

3-53

References
[1] Hoots, Felix R., and Ronald L. Roehrich. Models for propagation of NORAD element sets.

Aerospace Defense Command Peterson AFB CO Office of Astrodynamics, 1980.

See Also
Objects
satelliteScenario | groundStation | access | satelliteScenarioViewer

Functions
show | play | hide

Topics
“Comparison of Orbit Propagators”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-54

GroundStation
Ground station object belonging to satellite scenario

Description
The GroundStation object defines a ground station object belonging to a satellite scenario.

Creation
You can create GroundStation object using the groundStation object function of the
satelliteScenario object.

Properties
Name — GroundStation name
"GroundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

GroundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one GroundStation is added, specify Name as a string scalar or a character vector.
• If multiple GroundStations are added, specify Name as a string scalar, character vector, string

vector or a cell array of character vectors. All GroundStations added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of GroundStations being added.
Each GroundStation is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID of the GroundStations added by the GroundStation object function.
Data Types: char | string

ID — GroundStation ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

GroundStation ID assigned by the simulator, specified as a positive scalar.

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

 GroundStation

3-55

• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to GroundStation, longitude
specified as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
GroundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the GroundStation.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
GroundStation.

3 Objects

3-56

• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the GroundStation.

When AutoSimulate of the satellite scenario is false, MinElevationAngle can be modified while
the SimulationStatus is NotStarted or InProgress.
Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the GroundStation, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the GroundStation, specified as the comma-separated pair consisting of
'Gimbals' and a row vector of Gimbal objects.

Transmitters — Transmitters attached to GroundStation
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the GroundStation, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 GroundStation

3-57

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of GroundStation label visibility
true or 1 (default) | false or 0

State of GroundStation label visibility, specified as a comma-separated pair consisting of
'ShowLabel' and numerical or logical value of 1 (true) or 0 (false).

3 Objects

3-58

Data Types: logical

LabelFontSize — Font size of GroundStation label
15 (default) | positive scalar less than 30

Font size of the GroundStation label, specified as a comma-separated pair consisting of
'LabelFontSize' and a positive scalar less than 30.

LabelFontColor — Font color of GroundStation label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the GroundStationlabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 GroundStation

3-59

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Object Functions
access Add access analysis objects to satellite scenario
conicalSensor Add conical sensor to satellite scenario
transmitter Add transmitter to satellite scenario
receiver Add receiver to satellite scenario
gimbal Add gimbal to satellite or ground station
show Show object in satellite scenario viewer
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1

3 Objects

3-60

 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

See Also
Objects
satelliteScenario | satelliteScenarioViewer

 GroundStation

3-61

Functions
show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |
receiver

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations Using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-62

Access
Access analysis object belonging to scenario

Description
The Access object defines an access analysis object belonging to a Satellite, GroundStation or
ConicalSensor.

Creation
You can create an Access object using the access object function of GroundStation or
Satellite.

Properties
Sequence — IDs of satellites, ground stations, or conical sensors
vector of positive numbers

IDs of the satellites, ground stations, and conical sensors defining access analysis, specified as a
vector of positive numbers.

LineWidth — Visual width of access analysis object
1 (default) | scalar

Visual width of access analysis object in pixels, specified as a scalar in the range (0, 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of analysis line
[0.5 0 1] (default) | RGB triplet | hexadecimal color code | color name | short name

Color of access analysis line, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

 Access

3-63

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Object Functions
show Show object in satellite scenario viewer
accessStatus Status of access between first and last node defining access analysis
accessIntervals Intervals during which access status is true
accessPercentage Percentage of time when access exists between first and last node defining the

access analysis
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

3 Objects

3-64

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

 Access

3-65

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-66

ConicalSensor
Conical sensor object belonging to satellite scenario

Description
ConicalSensor defines a conical sensor object belonging to a satellite scenario.

Creation
You can create the ConicalSensor object using the conicalSensor object function of the
Satellite or GroundStation objects.

Properties
Name — ConicalSensor name
"ConicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

ConicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one ConicalSensor is added, specify Name as a string scalar or a character vector.
• If multiple ConicalSensors are added, specify Name as a string scalar, character vector, string

vector or a cell array of character vectors. All ConicalSensors added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of ConicalSensors being added.
Each ConicalSensor is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID of the ConicalSensors added by the ConicalSensor object function.
Data Types: char | string

ID — ConicalSensor ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

ConicalSensor ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

 ConicalSensor

3-67

• One ConicalSensor — MountingLocation is a three-element vector.
• Multiple ConicalSensors — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified ConicalSensors.
When specified as a matrix, MountingLocation must contain three rows and the same number
of columns as the ConicalSensors. The columns correspond to the mounting location of each
specified ConicalSensor and the rows correspond to the mounting location coordinates in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One ConicalSensor — MountingAngles is a three-element vector.
• Multiple ConicalSensors — MountingAngles can be a three-element vector or a matrix. When
specified as a vector, the same MountingAngless are assigned to all specified ConicalSensors.
When specified as a matrix, MountingAngles must contain three rows and the same number of
columns as the ConicalSensors. The columns correspond to the mounting angles of each specified
ConicalSensor and the rows correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180] | vector

Field of view angle in degrees, specified as a scalar in the range [0, 180] or a vector.

• One ConicalSensor — MaxViewAngle must be a scalar.
• Multiple ConicalSensor — MaxViewAngle can be a scalar or a vector. When scalar, the same

MaxViewAngle is assigned to all specified ConicalSensors. When vector, the length of
MaxViewAngle must equal the number of ConicalSensors to be specified. Each element of
MaxViewAngle is assigned to the specified corresponding ConicalSensor.

When AutoSimulate of the satellite scenario is false, you can modify MaxViewAngle while the
SimulationStatus is NotStarted or InProgress.
Data Types: double

3 Objects

3-68

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Access analysis objects, specified as a row vector of Access objects.

FieldOfView — Field of view objects
row vector of FieldOfView objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Field of view objects, specified as a scalar of FieldOfView objects.

Note The properties Name, MountingLocation, MountingAngles, and MaxViewAngle can be specified
as name-value arguments in conicalSensor. The size of specified name-value pairs determines the
number of conical sensors specified. Refer to these properties to understand how they must be
defined when specifying multiple conical sensors.

Object Functions
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame
access Add access analysis objects to satellite scenario
fieldOfView Visualize field of view of conical sensor

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

 ConicalSensor

3-69

semiMajorAxis = 7878137; % meters
eccentricity = 0;
inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees
 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]
 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

3 Objects

3-70

g =
 Gimbal with properties:

 Name: Gimbal 3
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

 ConicalSensor

3-71

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17
 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

3 Objects

3-72

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 ConicalSensor

3-73

Transmitter
Transmitter object belonging to satellite scenario

Description
Transmitter defines a transmitter object belonging to a satellite scenario.

Creation
You can create Transmitter objects using the transmitter method of satellite, groundStation,
or gimbal.

Properties
Name — Transmitter name
"Transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

Transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one Transmitter is added, specify Name as a string scalar or a character vector.
• If multiple Transmitters are added, specify Name as a string scalar, character vector, string vector

or a cell array of character vectors. All Transmitters added as a string scalar or a character vector
are assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of Transmitters being added. Each Transmitter is
assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID of the Transmitters added by the Transmitter object function.
Data Types: char | string

ID — Transmitter ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Transmitter ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

3 Objects

3-74

• One Transmitter — MountingLocation is a three-element vector.
• Multiple Transmitters — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified Transmitters.
When specified as a matrix, MountingLocation must contain three rows and the same number
of columns as the Transmitters. The columns correspond to the mounting location of each
specified Transmitter and the rows correspond to the mounting location coordinates in the parent
body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One Transmitter — MountingAngles is a three-element vector.
• Multiple Transmitters — MountingAngles can be a three-element vector or a matrix. When
specified as a vector, the same MountingAngless are assigned to all specified Transmitters.
When specified as a matrix, MountingAngles must contain three rows and the same number of
columns as the Transmitters. The columns correspond to the mounting angles of each specified
Transmitter and the rows correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with Transmitter
scalar | vector

Antenna object associated with the Transmitter, specified as either a scalar or a vector. This object
can be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array
System Toolbox. The default Gaussian antenna has a dish diameter of 1 m and an aperture efficiency
of 0.65.

Antenna can be specified in Transmitter as a name-value pair consisting of 'Antenna' and a scalar,
antenna or phased array objects.

• If only one Transmitter is added, Antenna must be a scalar.
• If multiple Transmitters are added, Antenna as a vector. The same antenna is assigned to all

Transmitters.

 Transmitter

3-75

SystemLoss — System loss in Transmitter
5 (default) | scalar | vector

System loss in dB, specified as a scalar or a vector.

System loss can be specified in Transmitter as a name-value pair consisting of 'SystemLoss' and a
scalar, or vector.

• If only one Transmitter is added, specify SystemLoss as a scalar.
• If multiple Transmitters are added, specify SystemLoss as a scalar or a vector. When

SystemLoss is a scalar, the same SystemLoss is assigned to all Transmitters. When
SystemLoss is a vector, its length must equal the number of Transmitter and each element of
SystemLoss is assigned to the corresponding Transmitter specified.

When AutoSimulate property of the satellite scenario is false, you can modify the SystemLoss
value while the SimulationStatus is NotStarted or InProgress.

Frequency — Transmitter frequency
14e9 (default) | scalar | vector

Transmitter frequency in Hz, specified as a name-value pair consisting of 'Frequency' and a scalar
double or a vector double.

• If one Transmitter is added, the Frequency must be a scalar.
• If multiple Transmitters are added, the frequency value can be a scalar or a vector. All

Transmitters added as a scalar are assigned the same specified Frequency. The length of the
vector must equal the number of Transmitters added and each element of Frequency is assigned
to the corresponding Transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the Frequency value while the
SimulationStatus is NotStarted or InProgress.

BitRate — Bit rate of transmitter
10 (default) | scalar | vector

Bit rate of the transmitter in Mbps, specified as a name-value pair consisting of 'BitRate' and a scalar
double or a vector double.

• If one Transmitter is added, the bit rate value must be a scalar.
• If multiple Transmitters are added, the bit rate value can be a scalar or a vector. All Transmitters

added as a scalar are assigned the same specified BitRate. The length of the vector must equal
the number of Transmitters added and each element of BitRate is assigned to the corresponding
Transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the BitRate value while the
SimulationStatus is NotStarted or InProgress.

Power — Power of high power amplifier
12 (default) | scalar | vector

Power of the high power amplifier in dbW, specified as a name-value pair consisting of 'Power' and a
scalar double or a vector double.

• If one Transmitter is added, the power value must be a scalar.

3 Objects

3-76

• If multiple Transmitters are added, the power value can be a scalar or a vector. All Transmitters
added as a scalar are assigned the same specified Power. The length of the vector must equal the
number of Transmitters added and each element of Power is assigned to the corresponding
Transmitter specified.

When AutoSimulate of the satellite scenario is false, you can modify the Power value while the
SimulationStatus is NotStarted or InProgress.

Links — Link analysis objects
row vector of Link objects

This property is read-only.

Link analysis objects, specified as a row vector Link objects.

Object Functions
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame
gaussianAntenna Add Gaussian antennas
link Add link analysis objects to transmitter
pattern Plot 3-D radiation pattern of antenna
pointAt Specify the target at which the satellite is pointed

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

 Transmitter

3-77

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees

3 Objects

3-78

longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

 Transmitter

3-79

See Also
Objects
satelliteScenario | satelliteScenarioViewer | Receiver

Functions
play | show | hide | groundStation | access | receiver | transmitter | pointAt

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-80

Receiver
Receiver object belonging to satellite scenario

Description
The Receiver object defines a receiver object function belonging to the satellite scenario.

Creation
You can create Receiver object using the receiver object function of the Satellite,
GroundStation, or Gimbal object.

Properties
Name — Receiver name
"Receiver idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

Receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Receiver is added, specify Name as a string scalar or a character vector.
• If multiple Receivers are added, specify Name as a string scalar, character vector, string vector or

a cell array of character vectors. All Receivers added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of Receivers being added. Each Receiver is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the Receivers added by the Receiver object function.
Data Types: char | string

ID — Receiver ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Receiver ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

 Receiver

3-81

• One Receiver — MountingLocation is a three-element vector.
• Multiple Receivers — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified Receivers. When
specified as a matrix, MountingLocation must contain three rows and the same number of
columns as the Receivers. The columns correspond to the mounting location of each specified
Receiver and the rows correspond to the mounting location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One Receiver — MountingAngles is a three-element vector.
• Multiple Receivers — MountingAngles can be a three-element vector or a matrix. When
specified as a vector, the same MountingAngless are assigned to all specified Receivers. When
specified as a matrix, MountingAngles must contain three rows and the same number of
columns as the Receivers. The columns correspond to the mounting angles of each specified
Receiver and the rows correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with Receiver
scalar | vector

Antenna object associated with the Receiver, specified as either a scalar or a vector. This object can
be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default Gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

Antenna can be specified in Receiver as a name-value pair consisting of 'Antenna' and a scalar,
antenna or phased array objects.

• If only one Receiver is added, Antenna must be a scalar.
• If multiple Receivers are added, Antenna as a vector. The same antenna is assigned to all

Receivers.

SystemLoss — System loss in Receiver
5 (default) | scalar | vector

3 Objects

3-82

System loss in dB, specified as a scalar or a vector.

System loss can be specified in Receiver as a name-value pair consisting of 'SystemLoss' and a
scalar, or vector.

• If only one Receiver is added, specify SystemLoss as a scalar.
• If multiple Receivers are added, specify SystemLoss as a scalar or a vector. When SystemLoss is

a scalar, the same SystemLoss is assigned to all Receivers. When SystemLoss is a vector, its
length must equal the number of Receiver and each element of SystemLoss is assigned to the
corresponding Receiver specified.

When AutoSimulate property of the satellite scenario is false, you can modify the SystemLoss
value while the SimulationStatus is NotStarted or InProgress.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar | vector

Gain to noise temperature ratio of the antenna in dB/K, specified as the name-value pair consisting of
'GainToNoiseTemperatureRatio' and a scalar or a vector.

• If only one Receiver is added, specify GainToNoiseTemperatureRatio as a scalar.
• If multiple Receivers are added, specify GainToNoiseTemperatureRatio as a scalar, or a

vector. When GainToNoiseTemperatureRatio is a scalar, the same
GainToNoiseTemperatureRatio is assigned to all Receivers. When
GainToNoiseTemperatureRatio is a vector, its length must equal the number of Receivers and
each element of GainToNoiseTemperatureRatio is assigned to the corresponding Receiver
specified.

When AutoSimulate property of the satellite scenario is false, you can modify the
GainToNoiseTemperatureRatio value while the SimulationStatus is NotStarted or
InProgress.

RequiredEbNo — Minimum Eb/No necessary for link closure
10 (default) | scalar | vector

Minimum energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure in
dB, specified as the name-value pair consisting of 'RequiredEbNo' and a scalar or a vector.

• If only one Receiver is added, specify RequiredEbNo as a scalar.
• If multiple Receivers are added, specify RequiredEbNo as a scalar or a vector. When

RequiredEbNo is a scalar, the same RequiredEbNo is assigned to all Receivers. When
RequiredEbNo is a vector, its length must equal the number of Receivers and each element of
RequiredEbNo is assigned to the corresponding Receiver specified.

When AutoSimulate property of the satellite scenario is false, the RequiredEbNo property can
be modified while the SimulationStatus is NotStarted or InProgress.

Note The above properties except ID can be specified as name-value arguments in receiver. The
size of specified name-value pairs determines the number of receivers specified. Refer to these
properties to understand how they must be defined when specifying multiple receivers.

 Receiver

3-83

Object Functions
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame
gaussianAntenna Add Gaussian antennas
pattern Plot 3-D radiation pattern of antenna
pointAt Specify the target at which the satellite is pointed

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters

3 Objects

3-84

 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW

 Receiver

3-85

bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

3 Objects

3-86

See Also
Objects
satelliteScenario | satelliteScenarioViewer | Transmitter

Functions
groundStation | access | link | play | show | hide | transmitter | pointAt

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Receiver

3-87

Gimbal
Gimbal object belonging to satellite scenario

Description
The Gimbal defines a gimbal object belonging to a satellite scenario.

Creation
You can create a Gimbal object using the gimbal object function of the Satellite or
GroundStation.

Properties
Name — Gimbal name
"Gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the satellite function. After you call satellite, this
property is read-only.

Gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Gimbal is added, specify Name as a string scalar or a character vector.
• If multiple Gimbals are added, specify Name as a string scalar, character vector, string vector or a

cell array of character vectors. All Gimbals added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of Gimbals being added. Each Gimbal is assigned the
corresponding name from the vector or cell array.

In the default value, idx is the ID of the Gimbals added by the Gimbal object function.
Data Types: char | string

ID — Gimbal ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Gimbal ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

3 Objects

3-88

• One Gimbal — MountingLocation is a three-element vector.
• Multiple Gimbals — MountingLocation can be a three-element vector or a matrix. When
specified as a vector, the same MountingLocations are assigned to all specified Gimbals. When
specified as a matrix, MountingLocation must contain three rows and the same number of
columns as the Gimbals. The columns correspond to the mounting location of each specified
Gimbal and the rows correspond to the mounting location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingLocation property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

• One Gimbal — MountingAngles is a three-element vector.
• Multiple Gimbals — MountingAngles can be a three-element vector or a matrix. When specified

as a vector, the same MountingAngless are assigned to all specified Gimbals. When specified as
a matrix, MountingAngles must contain three rows and the same number of columns as the
Gimbals. The columns correspond to the mounting angles of each specified Gimbal and the rows
correspond to the yaw, pitch, and roll angles parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when the SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.
Example: [0; 30; 60]
Data Types: double

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Gimbal, specified as a row vector of conical sensors.

Transmitters — Transmitters attached to Gimbal
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Gimbal, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

 Gimbal

3-89

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

Object Functions
aer Calculate azimuth angle, elevation angle, and range of another satellite or ground

station in NED frame
conicalSensor Add conical sensor to satellite scenario
gimbalAngles Steering angles of gimbal
pointAt Specify the target at which the satellite is pointed
receiver Add receiver to satellite scenario
transmitter Add transmitter to satellite scenario

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137; % meters
eccentricity = 0;
inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]

3 Objects

3-90

 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees
 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]
 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g =
 Gimbal with properties:

 Name: Gimbal 3
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

 Gimbal

3-91

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

3 Objects

3-92

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17
 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

 Gimbal

3-93

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |
receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-94

FieldOfView
Field of view object belonging to satellite scenario

Description
The FieldOfView object defines a field of view object belonging to a satellite scenario.

Creation
You can create a FieldOfView object using the fieldOfView object function of the
ConicalSensor object.

Properties
LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

 FieldOfView

3-95

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of field of view contour
'inherit' (default) | 'manual'

Visibility mode of the field of view contour, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

3 Objects

3-96

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 21-Jun-2021 08:55:00
 StopTime: 26-Jun-2021 08:55:00
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137; % meters
eccentricity = 0;
inclination = 50; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 50; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
 argumentOfPeriapsis,trueAnomaly)

sat =
 Satellite with properties:

 Name: Satellite 1
 ID: 1
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
 Orbit: [1x1 matlabshared.satellitescenario.Orbit]
 OrbitPropagator: sgp4
 MarkerColor: [1 0 0]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [1 0 0]
 LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
 "Latitude",42.3001,"Longitude",-71.3504) % degrees

gs =
 GroundStation with properties:

 Name: Location To Photograph
 ID: 2
 Latitude: 42.3 degrees

 FieldOfView

3-97

 Longitude: -71.35 degrees
 Altitude: 0 meters
 MinElevationAngle: 0 degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 MarkerColor: [0 1 1]
 MarkerSize: 10
 ShowLabel: true
 LabelFontColor: [0 1 1]
 LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g =
 Gimbal with properties:

 Name: Gimbal 3
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
 Transmitters: [1x0 satcom.satellitescenario.Transmitter]
 Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor =
 ConicalSensor with properties:

 Name: Conical sensor 4
 ID: 4
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 MaxViewAngle: 60 degrees
 Accesses: [1x0 matlabshared.satellitescenario.Access]
 FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
 Access with properties:

3 Objects

3-98

 Sequence: [4 2]
 LineWidth: 1
 LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 __________________ ________________________ ______________ ____________________ ____________________ ________ __________ ________

 "Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00 21-Jun-2021 10:55:00 1020 1 2
 "Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00 21-Jun-2021 12:58:00 1320 2 3
 "Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00 21-Jun-2021 15:01:00 1440 3 4
 "Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00 21-Jun-2021 17:04:00 1380 5 5
 "Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00 21-Jun-2021 19:07:00 1380 6 6
 "Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00 21-Jun-2021 21:08:00 1320 7 7
 "Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00 21-Jun-2021 23:04:00 840 8 8
 "Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00 22-Jun-2021 10:02:00 660 13 13
 "Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00 22-Jun-2021 12:07:00 1260 14 15
 "Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00 22-Jun-2021 14:10:00 1440 15 16
 "Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00 22-Jun-2021 16:13:00 1380 16 17

 FieldOfView

3-99

 "Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00 22-Jun-2021 18:16:00 1380 18 18
 "Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00 22-Jun-2021 20:18:00 1380 19 19
 "Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00 22-Jun-2021 22:16:00 1080 20 20
 "Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00 23-Jun-2021 11:16:00 1200 26 27
 "Conical sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00 23-Jun-2021 13:19:00 1380 27 28
 ⋮

Calculate the maximum revisit time in hours.

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

3 Objects

3-100

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 FieldOfView

3-101

Link
Link analysis object belonging to Transmitter

Description
The Link object defines a link analysis object belonging to Transmitter.

Creation
You can create a Link object using the link object function of the Transmitter or Receiver
objects.

Properties
Sequence — Transmitter or receiver ID
vector of positive numbers

You can set this property only when calling Link. After you call Link, this property is read-only.

Transmitter or receiver ID, specified as a vector of positive numbers.

LineWidth — Visual width of link line
1 (default) | scalar in the range (0 10]

Visual width of link line in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of link line
[0 1 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the link line, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3 Objects

3-102

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Object Functions
show Show object in satellite scenario viewer
ebno Eb/No at final node of link
linkPercentage Percentage of time when link between first and last node in link analysis is closed
linkStatus Status of link closure between first and last node
linkIntervals Intervals during which link is closed
hide Hides satellite scenario entity from viewer

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

 Link

3-103

startTime = datetime(2020,11,25,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 25-Nov-2020
 StopTime: 26-Nov-2020
 SampleTime: 60
 Viewers: [0×0 matlabshared.satellitescenario.Viewer]
 Satellites: [1×0 matlabshared.satellitescenario.Satellite]
 GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
 AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"Name","Satellite");

Add a transmitter to the satellite.

frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB
txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency,"power",power,...
 "BitRate",bitRate,"SystemLoss",systemLoss)

txSat =
 Transmitter with properties:

 Name: Satellite Transmitter
 ID: 2
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 Frequency: 2.7e+10 Hertz
 BitRate: 20 Mbps
 Power: 20 decibel-watts
 Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(sat,"Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemperatureRatio,...
 "SystemLoss",systemLoss)

3 Objects

3-104

rxSat =
 Receiver with properties:

 Name: Satellite Receiver
 ID: 3
 MountingLocation: [0; 0; 0] meters
 MountingAngles: [0; 0; 0] degrees
 Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
 SystemLoss: 3 decibels
 GainToNoiseTemperatureRatio: 5 decibels/Kelvin
 RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;
gaussianAntenna(txSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter,"ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gs1 = groundStation(sc,"Name","Ground Station 1");
latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,"Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5]; % meters
mountingAngles = [0; 180; 0]; % degrees
gimbalGs1 = gimbal(gs1,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2,"MountingLocation",mountingLocation,"MountingAngles",mountingAngles);

Track the satellite using the gimbals.

pointAt(gimbalGs1,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9; % Hz
power = 40; % dBW
bitRate = 20; % Mbps
txGs1 = transmitter(gimbalGs1,"Name","Ground Stationn 1 Transmitter","Frequency",frequency,...
 "Power",power,"BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2,"Name","Ground Station 2 Receiver","RequiredEbNo",requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGs1,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

 Link

3-105

Add link analysis to transmitter txGs1.

lnk = link(txGs1,rxSat,txSat,rxGs2)

lnk =
 Link with properties:

 Sequence: [8 3 2 9]
 LineWidth: 1
 LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)

ans =

 0×8 empty table

Visualize the link using the Satellite Scenario Viewer.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

3 Objects

3-106

Functions
show | play | hide | groundStation | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Link

3-107

GroundTrack
Ground track object belonging to satellite in scenario

Description
The GroundTrack object defines a ground track object belonging to a satellite in a scenario.

Creation
You can create a GroundTrack object using the groundTrack object function of the Satellite
object.

Properties
LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

3 Objects

3-108

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 GroundTrack

3-109

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of ground track
'inherit' (default) | 'manual'

Visibility mode of the ground track, specified as either one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent

3 Objects

3-110

• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);
stopTime = startTime + days(5);
sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530; % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity; % seconds
earthStandardGravitationalParameter = 398600.4418e9; % m^3/s^2
semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))^2))^(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;
inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
 argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","GEO Sat");

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

 GroundTrack

3-111

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime",leadTime,"TrailTime",trailTime)

gt =
 GroundTrack with properties:

 LeadTime: 172800
 TrailTime: 172800
 LineWidth: 1
 LeadLineColor: [1 0 1]
 TrailLineColor: [1 0.5000 0]
 VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);

3 Objects

3-112

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 GroundTrack

3-113

Pattern
Radiation pattern visualization

Description
The Pattern object defines a radiation pattern visualization for a transmitter or receiver.

Creation
You can create Pattern objects by using the pattern object function of the Transmitter or
Receiver object.

Properties
Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.
Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.
Data Types: double | string | char

Transparency — Transparency of pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of 0 means the plot
is completely transparent, and a value of 1 means the plot is opaque.
Data Types: double

VisibilityMode — Visibility of graphic relative to its parent
'inherit' (default) | 'manual'

Visibility of the graphic relative to its parent, specified as 'inherit' or 'manual'. This visibility
mode determines the visibility of this graphic in the satelliteScenarioViewer object relative to
its parent graphic. The parent graphic of the Pattern object is its corresponding satellite.

• 'inherit'— Inherit visibility from the parent graphic. The visibility of the graphic matches the
parent visibility.

• 'manual'— Do not inherit visibility from the parent. The visibility of the graphic is independent
of the parent visibility.

3 Objects

3-114

Data Types: char | string

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.

startTime = datetime(2021,2,12,13,30,0);
stopTime = startTime + hours(5);
sampleTime = 60; %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);
gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat,"Frequency",3e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

 Pattern

3-115

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

3 Objects

3-116

Increase the visual size of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = "parula";

 Pattern

3-117

See Also
Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021b

3 Objects

3-118

dvbrcs2RecoveryConfig
Receiver configuration parameters for DVB-RCS2

Description
The dvbrcs2RecoveryConfig object creates a Digital Video Broadcasting Second Generation
Return Channel over Satellite (DVB-RCS2) recovery configuration object. Recover the frame protocol
data unit (PDU) from the received DVB-RCS2 waveform by using object properties.

Creation

Syntax
cfgrcs2 = dvbrcs2RecoveryConfig
cfgrcs2 = dvbrcs2RecoveryConfig(Name,Value)

Description

cfgrcs2 = dvbrcs2RecoveryConfig creates a default DVB-RCS2 recovery configuration object.

cfgrcs2 = dvbrcs2RecoveryConfig(Name,Value) sets “Properties” on page 3-119 using one or
more name-value pairs. Enclose each property name in quotes. For example,
dvbrcs2RecoveryConfig('IsCustomWaveform',true) recovers a custom DVB-RCS2 waveform
with the specified property values.

Properties
TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

• "TC-LM" — Turbo codes with linear modulation (TC-LM)
• "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".
Data Types: char | string

IsCustomWaveform — Custom waveform indicator
0 or false (default) | 1 or true

 dvbrcs2RecoveryConfig

3-119

Custom waveform indicator, specified as one of these values.

• 0 (false) — Use this option to demodulate the complex in-phase quadrature (IQ) samples from a
standard-defined reference waveform.

• 1 (true) — Use this option to demodulate the complex IQ samples from a custom waveform.

Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

• Integer in the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

• Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the values set for TransmissionFormat and WaveformID properties, this object considers
the receiver parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].
Dependencies

To enable this property, set the IsCustomWaveform property to false.
Data Types: double | unit8

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].
Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.
Data Types: double

BurstLength — Burst length
256 (default) | integer in the range [7, 25,233,405]

Burst length, specified as an integer in the range [7, 25,233,405]. This length includes the preamble,
postamble, and pilot sum, in addition to the payload symbols.

When you set the TransmissionFormat property to "TC-LM", the unit of burst length is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of burst length is chips.
Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

3 Objects

3-120

• "pi/2-BPSK"
• "QPSK"
• "8PSK"
• "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
"1/3" (default) | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

• "2/3", "3/4", "4/5", "5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

• "3/4", "4/5", "5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: char | string

PermutationParameters — Permutation control parameters
[9 0 0 0 0] (default) | vector

Permutation control parameters that the dvbrcs2RecoveryConfig uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q0, Q1, Q2, and Q3. P must be in the
range [9, 255], and Q0, Q1, Q2, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

 dvbrcs2RecoveryConfig

3-121

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the payload symbols.
Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the payload symbols in the burst sequence.
Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.
Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is detected, which
must be removed to recover the payload symbols.
Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.

3 Objects

3-122

Data Types: double

PilotSum — Total pilot symbols or chips in received waveform
0 (default) | nonnegative integer

Total pilot symbols or chips in the received waveform, specified as one of these options.

• Integer in the range [0, 255] — Use this option when you set the TransmissionFormat property
to "TC-LM".

• Integer in the range [0, 65,535] — Use this option when you set the TransmissionFormat
property to "SS-TC-LM".

When you set the TransmissionFormat property to "TC-LM", the unit of pilot sum is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot sum is chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.
Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

• 16-bit vector of binary values from the most significant bit (MSB), z16, to least significant bit
(LSB), z1. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

• Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of z0 is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, the default scrambling sequence is used to descramble the
received reference waveform.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.
Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] (default) | 1 | 16-bit vector of binary values

Scrambling initial conditions of the shift register, specified as one of these options.

 dvbrcs2RecoveryConfig

3-123

• 1 — Use this option to set the initial condition of each cell of the shift register to this value.
• 16-bit vector of binary values from the MSB (z16) to LSB (z1) — Use this option to set the initial

condition of each cell of the shift register to the corresponding element in this vector.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.
Data Types: double | logical

NumDecodingIterations — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations of the DVB-RCS2 turbo decoder, specified as a positive integer.
Data Types: double

PayloadLengthInBytes — Payload length in bytes
10 (default) | positive integer

This property is read-only.

Payload length in bytes, retuned as a positive integer. This length represents the DVB-RCS2 turbo
decoder output length.

Use this property output to choose a valid value for the first element of PermutationParameters
property (that is, P).

PayloadLengthInBytes*4 and P must be co-primes.
Data Types: double

Object Functions

Specific to This Object
dvbrcs2BitRecover Recover bits for DVB-RCS2 waveform

Examples

Create DVB-RCS2 Receiver Object

Create a DVB-RCS2 recovery configuration object.

Create and then set the properties of the object.

cfgrcs2 = dvbrcs2RecoveryConfig;
cfgrcs2.TransmissionFormat = "SS-TC-LM";
cfgrcs2.ContentType = "control";
cfgrcs2.WaveformID = 20;
cfgrcs2.NumDecodingIterations = 6;

Display the properties of the DVB-RCS2 object.

3 Objects

3-124

disp(cfgrcs2)

 dvbrcs2RecoveryConfig with properties:

 TransmissionFormat: "SS-TC-LM"
 ContentType: "control"
 IsCustomWaveform: 0
 WaveformID: 20

 Coding and Modulation:
 NumDecodingIterations: 6

Recover PDU from DVB-RCS2 Reference Waveform

Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.WaveformID = 7;
wg.SamplesPerSymbol = 2;

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,"measured");

Create and then configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',0.2, ...
 'InputSamplesPerSymbol',sps, ...
 'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.

filtOut = rxFilter([rxIn; ...
 complex(zeros(span/2*sps,1))]);
rxSymb = filtOut(span+1:end);

 dvbrcs2RecoveryConfig

3-125

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10^(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0

fprintf("Number of bit errors = %d\n", sum(framePDU~=rxOut))

Number of bit errors = 0

References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCS2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbrcs2BitRecover | dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator

Introduced in R2021b

3 Objects

3-126

System Objects

4

ccsdsTMWaveformGenerator

Generate CCSDS TM waveform

Description
The ccsdsTMWaveformGenerator System object generates a Consultative Committee for Space
Data Systems (CCSDS) Telemetry (TM) time-domain waveform. The object implements the waveform
generation aspects of CCSDS standard blue books:

• CCSDS 131.0-B-3 — TM synchronization and channel coding [1]
• CCSDS 401.0-B-30 — Radio frequency and modulation systems [2]
• CCSDS 131.2-B-1 — Flexible advanced coding and modulation scheme for high rate TM

applications [3]

Note The object supports waveform generation specified by the CCSDS TM synchronization and
channel coding standard [1] and CCSDS flexible advanced coding and modulation scheme for high
rate TM standard [3]. To obtain the waveform for either of the desired standard, set the
WaveformSource property.

To generate a CCSDS TM waveform:

1 Create the ccsdsTMWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
tmWaveGen = ccsdsTMWaveformGenerator
tmWaveGen = ccsdsTMWaveformGenerator(Name,Value)

Description

tmWaveGen = ccsdsTMWaveformGenerator creates a default CCSDS TM waveform generator
System object.

tmWaveGen = ccsdsTMWaveformGenerator(Name,Value) sets “Properties” on page 4-3 using
one or more name-value pairs. For example,
ccsdsTMWaveformGenerator("WaveformSource","flexible advanced coding and
modulation","ACMFormat",20) specifies the CSSDS TM waveform source as flexible advanced
coding and modulation standard with ACM format as 20 for the generated waveform.

4 System Objects

4-2

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

General

WaveformSource — CCSDS TM waveform source
"synchronization and channel coding" (default) | "flexible advanced coding and
modulation"

CCSDS TM waveform source, specified as one of these values.

• "synchronization and channel coding" — Use this option to set the waveform to CCSDS
TM synchronization and channel coding, as specified in CCSDS 131.0-B-3 [1].

• "flexible advanced coding and modulation" — Use this option to set the waveform to
CCSDS flexible advanced coding and modulation for high rate TM applications, as specified in
CCSDS 131.2-B-1 [3].

Data Types: char | string

ACMFormat — ACM format
1 (default) | integer in the range [1, 27]

Adaptive coding and modulation (ACM) format, specified as an integer in the range [1, 27], as
specified in CCSDS 131.2-B-1 Section 5.2.4 Table 5-2 [3].

Tunable: Yes

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | uint8

NumBytesInTransferFrame — Number of bytes in one transfer frame
223 (default) | integer in the range [1, 2048]

Number of bytes in one transfer frame, specified as an integer in the range [1, 2048].

Dependencies

To enable this property, one of these conditions should be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
ChannelCoding property to "none", "convolutional", or "LDPC" on stream of sync marked
transfer frame (SMTF).

• Set WaveformSource property to "flexible advanced coding and modulation". In this
case, the minimum number of NumBytesInTransferFrame is 223.

 ccsdsTMWaveformGenerator

4-3

For other values of ChannelCoding, this NumBytesInTransferFrame property is calculated
internally based on other properties.
Data Types: double | uint16

HasRandomizer — Option for randomizing data
1 or true (default) | 0 or false

Option for randomizing the data, specified as a numeric or logical value of 1 (true) or 0 (false).
Set this value to 1 (true) to randomize the data present in the channel access data unit (CADU).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).
Data Types: double | logical

HasASM — Option for inserting ASM
1 or true (default) | 0 or false

Option for inserting attached sync marker (ASM), specified as a numeric or logical value of 1
(true) or 0 (false). Set this value to 1 (true) to indicate the data in CADU is attached with ASM.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).
Data Types: double | logical

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format to select the PCM coding in the CCSDS TM waveform, specified
as one of these values.

• "NRZ-L" — NRZ-level
• "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the Modulation property to "BPSK", "QPSK", "8PSK", "OPSK", or "PCM/PSK/PM".
Data Types: char | string

Channel Coding

ChannelCoding — Forward error correction coding scheme
"RS" (default) | "none" | "convolutional" | "concatenated" | "turbo" | "LDPC"

4 System Objects

4-4

Forward error correction coding scheme, specified as one of these values.

• "none"
• "RS"
• "convolutional"
• "concatenated"
• "turbo"
• "LDPC"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".
Data Types: char | string

NumBitsInInformationBlock — Number of bits in turbo or LDPC message
7136 (default) | 1784 | 3568 | 8920 | 1024 | 4096 | 16384

Number of bits in the turbo or lower density parity check (LDPC) message, specified as one of these
values.

• 1784, 3568, 7136, or 8920 — Use one of these values when you set the ChannelCoding property
to "turbo".

• 1024, 4096, 16384, or 7136 — Use one of these values when you set the ChannelCoding
property to "LDPC".

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".
Data Types: double | uint8

ConvolutionalCodeRate — Code rate of convolutional code
"1/2" (default) | "2/3" | "3/4" | "5/6" | "7/8"

Code rate of convolutional code, specified as a one of these values.

• "1/2"
• "2/3"
• "3/4"
• "5/6"
• "7/8"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "convolutional" or "concatenated".

When you set the ChannelCoding property to "concatenated", the numeric value of the code rate
also depends on the constituent Reed-Solomon (RS) code. You can obtain the actual numeric value for
any code from the output field ActualCodeRate of the info object function.

 ccsdsTMWaveformGenerator

4-5

Data Types: char | string

CodeRate — Code rate of turbo or LDPC code
"1/2" (for turbo code) (default) | "7/8" (for LDPC code) (default) | "2/3" | "1/3" | "1/4" | "1/6" |
"4/5"

Code rate of turbo or LDPC code, specified as one of these values.

• "1/2", "1/3", "1/4", or "1/6" — Use one of these values when you set the ChannelCoding
property to "turbo".

• "1/2", "2/3", "4/5", or "7/8" — Use one of these values when you set the ChannelCoding
property to "LDPC".

Note When you set the ChannelCoding property to "LDPC" and the
NumBitsInInformationBlock property to 7136, the CodeRate must be "7/8".

For an LDPC code, setting CodeRate to 7/8 implies an actual code rate numeric value of 223/255.
You can obtain the actual numeric value for any code from the output field ActualCodeRate of the
info object function.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".
Data Types: char | string

RSMessageLength — Number of bytes in one RS message block
223 (default) | 239

Number of bytes in one RS message block, specified as 223 or 239.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

RSInterleavingDepth — Interleaving depth of RS code
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth of the RS code, specified as 1, 2, 3, 4, 5, or 8. The interleaving depth is the
number of RS codewords in one code block.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

IsRSMessageShortened — Option to shorten RS code
0 or false (default) | 1 or true

4 System Objects

4-6

Option to shorten the RS code, specified as a numeric or logical value of 0 (false) or 1 (true). Set
this value to 1 (true) to shorten the RS code.
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | logical

RSShortenedMessageLength — Number of bytes in RS shortened message block
223 (default) | integer in the range [1, RSMessageLength]

Number of bytes in the RS shortened message block, specified as an integer in the range [1,
RSMessageLength].
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "RS" or "concatenated", and the
IsRSMessageShortened property to 1 (true).
Data Types: double | uint8

IsLDPCOnSMTF — Option for using LDPC on stream of SMTF
0 or false (default) | 1 or true

Option for using LDPC on the stream of a sync marked transfer frame (SMTF), specified as a numeric
or logical value of 0 (false) or 1 (true). Set this value to 1 (true) to indicate LDPC on the stream
of SMTF as specified in CCSDS 131.0-B-3 Section 8 of the TM synchronization and channel coding
standard [1]. To indicate LDPC on the transfer frame, set this value to 0 (false).
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "LDPC".
Data Types: double | logical

LDPCCodeBlockSize — Number of LDPC codewords in LDPC code block of stream of SMTF
1 (default) | integer in the range [1, 8]

Number of LDPC codewords in the LDPC code block of the stream of SMTF, specified as an integer in
the range [1, 8].
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "LDPC", and the IsLDPCOnSMTF property to true.
Data Types: double | uint8

Digital Modulation and Filter

Modulation — Modulation scheme
"QPSK" (default) | "BPSK" | "8PSK" | "OQPSK" | "GMSK" | "PCM/PSK/PM" | "PCM/PM/biphase-L" |
"4D-8PSK-TCM"

Modulation scheme used in CCSDS TC waveform, specified as one of these values.

 ccsdsTMWaveformGenerator

4-7

• "QPSK"
• "BPSK"
• "8PSK"
• "OQPSK"
• "GMSK"
• "PCM/PSK/PM"
• "PCM/PM/biphase-L"
• "4D-8PSK-TCM"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".
Data Types: char | string

PulseShapingFilter — Pulse shaping filter
"root raised cosine" (default) | "none"

Pulse shaping filter, specified as "root raised cosine" or "none".
Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to "BPSK", "QPSK", "8PSK", or "4D-8PSK-TCM".

• Set WaveformSource property to"flexible advanced coding and modulation".

Data Types: char | string

RolloffFactor — Roll-off factor of SRRC baseband filter
0.35 (default) | scalar in the range [0, 1]

Roll-off factor of the square root raised cosine (SRRC) baseband filter, specified as a scalar in the
range [0, 1].

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "OQPSK", or "4D-8PSK-TCM".

• Set WaveformSource property to "flexible advanced coding and modulation".

Data Types: double

FilterSpanInSymbols — Filter span in number of symbols
10 (default) | positive integer

4 System Objects

4-8

Filter span in number of symbols, specified as a positive integer.

The ccsdsTMWaveformGenerator System object truncates the infinite impulse response of the ideal
root raised cosine filter to this value.

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "OQPSK", or "4D-8PSK-TCM".

• Set WaveformSource property to "flexible advanced coding and modulation".

Data Types: double | uint32

BandwidthTimeProduct — Bandwidth time product for GMSK modulator
0.25 (default) | 0.5

Bandwidth time product for the Gaussian minimum shift keying (GMSK) modulator, specified as 0.25
or 0.5.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "GMSK".
Data Types: double

ModulationEfficiency — Modulation efficiency of 4D-8PSK-TCM
2 (default) | 2.25 | 2.5 | 2.75

Modulation efficiency of 4D-8PSK trellis coded modulator (TCM), specified as 2, 2.25, 2.5, or 2.75.
This property indicates the number of bits for each complex baseband symbol.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "4D-8PSK-TCM".
Data Types: double

SubcarrierWaveform — Type of waveform to PSK-modulate NRZ data
"sine" (default) | "square"

Type of waveform to PSK-modulate the non-return-to-zero (NRZ) data, specified as "sine" or
"square".

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: char | string

 ccsdsTMWaveformGenerator

4-9

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SymbolRate — Coded symbol rate
2000 (default) | positive scalar

Coded symbol rate in Hz, specified as a positive scalar.
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: double

SubcarrierToSymbolRateRatio — Ratio of subcarrier frequency to symbol rate
4 (default) | integer in the range [1, 50]

Ratio of the subcarrier frequency to the symbol rate, specified as an integer in the range [1, 50].
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: double | uint8

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

This property is applicable for either input value of the WaveformSource property.
Dependencies

To enable this property, one of these conditions must be satisfied:

• Set the Modulation property to "OQPSK", "PCM/PSK/PM", or "GMSK".
• Set the PulseShapingFilter to "root raised cosine".

Data Types: double | uint8

HasPilots — Option for inserting pilot symbols
0 or false (default) | 1 or true

Option for inserting pilot symbols within data, specified as a numeric or logical value of 0 (false)
or 1 (true). Set this value to 1 (true) to indicate pilots are inserted, as described in CCSDS flexible
advanced coding and modulation scheme for high rate TM standard [3].

4 System Objects

4-10

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | logical

ScramblingCodeNumber — Scrambling code number
0 (default) | integer in the range [0, (218 – 2)]

Scrambling code number for flexible advanced coding and modulation for high rate TM applications
standard [3], specified as an integer in the range [0, (218 – 2)].

ScramblingCodeNumber is used to randomize the complex baseband symbols.

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | uint32

Read-Only

NumInputBits — Minimum number of bits required to generate waveform
integer

This property is read-only.

Minimum number of input bits to generate a waveform, returned as an integer.

The number of input bits must be an integer multiple of NumInputBits.
Data Types: double

MinNumTransferFrames — Minimum number of transfer frames for nonempty output
integer

This property is read-only.

Minimum number of transfer frames for a nonempty System object output, returned as an integer.

When you set the WaveformSource property to "flexible advanced coding and
modulation", or to "synchronization and channel coding" with the IsLDPCOnSMTF
property set to 1 (true), System object output is empty until it has sufficient input to process through
channel coding and modulation.
Data Types: double

Usage

Syntax
txWaveform = tmWaveGen(bits)
[txWaveform,encodedBits] = tmWaveGen(bits)

 ccsdsTMWaveformGenerator

4-11

Description

txWaveform = tmWaveGen(bits) generates a CCSDS TM time-domain waveform for the
corresponding input bits.

[txWaveform,encodedBits] = tmWaveGen(bits) also returns the bits obtained after TM
synchronization and channel coding sublayer operations.

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, in the form of transfer frames, specified as a binary-valued column vector. The
length of this vector must be an integer multiple of the number of bits in one transfer frame. The
NumInputBits property indicates the number of bits in one transfer frame.
Data Types: double | int8 | logical

Output Arguments

txWaveform — Generated CCSDS TM time-domain waveform
column vector

Generated CCSDS TM time-domain waveform, returned as a column vector. This output is generated
in the form of complex in-phase quadrature (IQ) samples.
Data Types: double

encodedBits — Output bits obtained after TM synchronization and channel coding sublayer
operations
binary-valued column vector

Output bits obtained after TM synchronization and channel coding sublayer operations, returned as a
binary-valued column vector.
Data Types: double | int8 | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to ccsdsTMWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object

4 System Objects

4-12

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate CCSDS TM Waveform for Synchronization and Channel Coding Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the synchronization and channel coding standard, for multiple transfer frames. Visualize the
waveform by using a spectrum plot.

Create a CCSDS TM System object. Set the waveform type as synchronization and channel
coding with GMSK-modulated concatenated codes.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "concatenated";
tmWaveGen.Modulation = "GMSK";
tmWaveGen.RSMessageLength = 239;
tmWaveGen.RSInterleavingDepth = 2;
tmWaveGen.BandwidthTimeProduct = 0.5;
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true

 Channel coding
 ChannelCoding: "concatenated"
 ConvolutionalCodeRate: "1/2"
 RSMessageLength: 239
 RSInterleavingDepth: 2
 IsRSMessageShortened: false

 Digital modulation and filter
 Modulation: "GMSK"
 BandwidthTimeProduct: 0.5000
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 15;
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the synchronization and channel coding standard by using
multiple System object calls.

rng default % For reproducible results
for iTF = 1:numTF
 bits = randi([0 1],tmWaveGen.NumInputBits,1);
 waveform = [waveform; tmWaveGen(bits)];
end

 ccsdsTMWaveformGenerator

4-13

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TM time-domain waveform.

BW = 36e6; % Typical satellite channel bandwidth
Fsamp = tmWaveGen.SamplesPerSymbol*BW;
scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp,...
 'AveragingMethod','Exponential');
scope(waveform)

Generate CCSDS TM Waveform for Flexible Advanced Coding and Modulation Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the flexible advanced coding and modulation scheme for high rate TM applications standard, for one
physical layer (PL) frame. Visualize the waveform by using a scatter plot.

Create a CCSDS TM System object, and then specify its properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "flexible advanced coding and modulation";
tmWaveGen.ACMFormat = 17; % 16APSK
tmWaveGen.PulseShapingFilter = "none";
disp(tmWaveGen)

4 System Objects

4-14

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "flexible advanced coding and modulation"
 ACMFormat: 17
 NumBytesInTransferFrame: 223

 Channel coding
 No properties.

 Digital modulation and filter
 PulseShapingFilter: "none"
 HasPilots: false
 ScramblingCodeNumber: 0

 Use get to show all properties

Calculate the number of transfer frames in one PL frame.

NumTFInOnePL = tmWaveGen.MinNumTransferFrames*16; % One PL frame consists of 16 codewords, as specified in the standard
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the flexible advanced coding and modulation scheme for high
rate TM applications standard.

rng default % For reproducible results
for iTF = 1:NumTFInOnePL
 bits = randi([0 1],tmWaveGen.NumInputBits,1);
 waveform = [waveform; tmWaveGen(bits)];
end

Display the scatter plot of the constellation for the generated waveform.

scatterplot(waveform);
legend off;

 ccsdsTMWaveformGenerator

4-15

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding

4 System Objects

4-16

 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter
 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

References
[1] CCSDS 131.0-B-3. Blue Book. Issue 3. "TM Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

 ccsdsTMWaveformGenerator

4-17

[2] CCSDS 401.0-B-30. Blue Book. Issue 30. "Radio Frequency and Modulation Systems - Part 1:
Earth Stations and Spacecraft." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, February 2020.

[3] CCSDS 131.2-B-1. Blue Book. Issue 1. "Flexible Advanced Coding and Modulation Scheme for
High Rate Telemetry Applications." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, March 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTCConfig

Introduced in R2021a

4 System Objects

4-18

dvbrcs2WaveformGenerator
Generate DVB-RCS2 waveform

Description
The dvbrcs2WaveformGenerator System object generates a Digital Video Broadcasting Second
Generation Return Channel over Satellite (DVB-RCS2) time-domain reference or a custom waveform.
The object implements the waveform generation aspects of ETSI EN 301 545-2 V1.2.1 (2014-11) [1].

To generate a DVB-RCS2 waveform:

1 Create the dvbrcs2WaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rcs2WaveGen = dvbrcs2WaveformGenerator
rcs2WaveGen = dvbrcs2WaveformGenerator(Name,Value)

Description

rcs2WaveGen = dvbrcs2WaveformGenerator creates a default DVB-RCS2 waveform generator
System object.

rcs2WaveGen = dvbrcs2WaveformGenerator(Name,Value) sets properties on page 4-19 using
one or more name-value arguments. For example, 'TransmissionFormat',"SS-TC-LM" specifies
to generate a reference DVB-RCS2 waveform of spread spectrum turbo codes with linear modulation
(SS-TC-LM) format.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

 dvbrcs2WaveformGenerator

4-19

• "TC-LM" — Turbo codes with linear modulation (TC-LM)
• "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Tunable: Yes
Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".
Data Types: char | string

IsCustomWaveform — Custom waveform indicator
false or 0 (default) | true or 1

Custom waveform indicator, specified as one of these numeric or logical values.

• 0 (false) — Generate a standard-defined reference waveform. For details, refer to ETSI EN 301
545-2 V1.2.1 (2014-11) Annex A Tables A-1 and A-2 [1].

• 1 (true) — Generate a custom waveform.

Tunable: Yes
Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

• Integer in the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

• Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the TransmissionFormat and WaveformID properties, the System object considers the
transmission parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to false.
Data Types: double | unit8

PreBurstGuardLength — Preburst guard length
0 (default) | nonnegative integer

Preburst guard length, specified as a nonnegative integer. This length represents the number of zero-
valued symbols in the guard time that are prefixed to the burst symbols, prior to the preamble.

A value of 0 indicates no guard symbols are prefixed.

4 System Objects

4-20

Tunable: Yes
Data Types: double

PostBurstGuardLength — Postburst guard length
0 (default) | nonnegative integer

Postburst guard length, specified as a nonnegative integer. This length represents the number of
zero-valued symbols in the guard time that are suffixed to the burst symbols, after the postamble.

In absence of the postamble, these symbols are suffixed directly after the payload symbols.

Tunable: Yes
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Data Types: double

PayloadLengthInBytes — Payload length
10 (default) | positive integer

Payload length in bytes, specified as one of these options.

• Integer in the range [3, 65,535] — Use this option when you set the ContentTypeproperty to
"control" or "logon".

• Integer in the range [5, 65,535] — Use this option when you set the ContentType property to
"traffic".

This length represents the size of the input data to the turbo encoder of this System object. Input
data includes the frame PDU and the cyclic redundancy check (CRC) bits.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

 dvbrcs2WaveformGenerator

4-21

• "pi/2-BPSK"
• "QPSK"
• "8PSK"
• "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
"1/3" (default) | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

• "2/3", "3/4", "4/5", "5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

• "3/4", "4/5", "5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".

This code rate is passed as an input to the turbo encoder function, that is, dvbrcs2TurboEncode, of
this System object.

Tunable: Yes
Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: char | string

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the burst sequence, prior to the modulation.

Tunable: Yes
Dependencies

To enable this property, set the IsCustomWaveform property to true.

4 System Objects

4-22

Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the burst sequence, prior to the modulation.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is added in the burst
sequence.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.
Data Types: double

 dvbrcs2WaveformGenerator

4-23

PermutationParameters — Permutation control parameters
[9 0 0 0 0] (default) | vector

Permutation control parameters that the dvbrcs2WaveformGenerator uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q0, Q1, Q2, and Q3. P must be in the
range [9, 255], and Q0, Q1, Q2, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

UniqueWord — Unique word
"FFFF" (default) | character array | string scalar

Unique word, specified as a character array or string scalar.

A unique word is a string of hexadecimal values that include the combination of the preamble, one
pilot block, and the postamble sequence. Pilots are included only when you set the PilotPeriod
property as nonzero.

To know the minimum required length of the unique word, use this formula.

ceil((PreambleLength + PostambleLength + PilotBlockLength)*bps/4); where bps is the bits
per seconds, determined by the MappingScheme specified.

For example, if PreambleLength = 9, PostambleLength = 8, PilotBlockLength = 1, and
MappingScheme = "QPSK" (bps = 2) then the minimum required length of the unique word by using
this formula:

ceil((9 + 8 + 1)*2/4) = 9 (hexadecimal values)

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: char | string

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

4 System Objects

4-24

Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

• 16-bit vector of binary values from the most significant bit (MSB), z16, to least significant bit
(LSB), z1. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

• Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of z0 is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, all of the reference waveforms use this default scrambling
sequence.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.
Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] (default) | 1 | 16-bit vector of binary values

Scrambling initial conditions of the shift register, specified as one of these options.

• 1 — Use this option to set the initial condition of each cell of the shift register to this value.
• 16-bit vector of binary values from the MSB (z16) to LSB (z1) — Use this option to set the initial

condition of each cell of the shift register to the corresponding element in this vector.

For this System object to generate a nonzero sequence, you must specify at least one nonzero
element in this vector.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.
Data Types: double | logical

FramePDULength — Frame PDU length
48 (default) | positive integer

 dvbrcs2WaveformGenerator

4-25

This property is read-only.

Frame PDU length, returned as a positive integer.

The frame PDU length indicates the length in bits of the input data to this System object. This length
is calculated by subtracting the length of the CRC sequence from the payload length in bits.
Data Types: double

Usage

Syntax
burst = rcs2WaveGen(pdu)

Description

burst = rcs2WaveGen(pdu) generates a DVB-RCS2-based burst symbols for the corresponding
input binary sequence.

Input Arguments

pdu — Frame PDU
binary-valued column vector

Frame PDU, specified as a binary-valued column vector.
Data Types: double | logical

Output Arguments

burst — DVB-RCS2-based burst samples
column vector

DVB-RCS2-based burst samples, returned as a column vector.

The System object outputs these burst symbols (including the guard symbols) post modulation and
pulse shaping.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbrcs2WaveformGenerator
info Characteristic information about object

Common to All System Objects
step Run System object algorithm

4 System Objects

4-26

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate Reference DVB-RCS2 Waveform

Generate a reference DVB-RCS2 time-domain waveform with SS-TC-LM format.

Create and then set the properties of a DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.ContentType = "logon";
wg.WaveformID = 10;
wg.SamplesPerSymbol = 6;

Display the properties of the waveform generator.

disp(wg)

 dvbrcs2WaveformGenerator with properties:

 TransmissionFormat: "SS-TC-LM"
 ContentType: "logon"
 IsCustomWaveform: false
 WaveformID: 10
 PreBurstGuardLength: 0
 PostBurstGuardLength: 0
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 6

 Use get to show all properties

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU);

Generate Custom DVB-RCS2 Waveform

Generate a custom DVB-RCS2 time-domain waveform having TC-LM format.

Create and then set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;

 dvbrcs2WaveformGenerator

4-27

wg.ContentType = "control";
wg.MappingScheme = "QPSK";
wg.CodeRate = "2/3";
wg.PreambleLength = 10;
wg.PostambleLength = 8;
wg.PermutationParameters = [13 4 2 1 2];
wg.UniqueWord = "FFFFFFFFF";

Display the properties of the waveform generator.

disp(wg)

 dvbrcs2WaveformGenerator with properties:

 TransmissionFormat: "TC-LM"
 ContentType: "control"
 IsCustomWaveform: true
 PreBurstGuardLength: 0
 PostBurstGuardLength: 0
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 PayloadLengthInBytes: 10

 Use get to show all properties

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU);

Generate Multiple Content Type DVB-RCS2 Bursts

Generate multiple ContentType DVB-RCS2 bursts.

Set the ContentType of the DVB-RCS2 waveform generator System Object™ as logon.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "logon";

Generate a frame PDU.

framePDU1 = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2 logon burst samples.

txWaveform1 = wg(framePDU1);

Now, generate the DVB-RCS2 traffic burst samples.

% ContentType property is tunable
wg.ContentType = "traffic";
framePDU2 = randi([0 1],wg.FramePDULength,1);
txWaveform2 = wg(framePDU2);

4 System Objects

4-28

References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCS2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig

Introduced in R2021b

 dvbrcs2WaveformGenerator

4-29

dvbs2WaveformGenerator
Generate DVB-S2 waveform

Description
The dvbs2WaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation (DVB-S2) time-domain waveform consisting of a single or multiple physical layer
frames. The object implements the waveform generation aspects of ETSI EN 302 307-1 V1.4.1
(2014-11) [1].

To generate a DVB-S2 waveform:

1 Create the dvbs2WaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
s2waveGen = dvbs2WaveformGenerator
s2waveGen = dvbs2WaveformGenerator(Name,Value)

Description

s2waveGen = dvbs2WaveformGenerator creates a default DVB-S2 waveform generator System
object.

s2waveGen = dvbs2WaveformGenerator(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example,
dvbs2WaveformGenerator('NumInputStreams',4,'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

4 System Objects

4-30

• "TS" — For transport stream format
• "GS" — For generic stream format

Data Types: char | string

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].
Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

• Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

• Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.

Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.
Data Types: double

FECFrame — FEC frame format
"normal" (default) | "short"

Forward error correction (FEC) frame format, specified as one of these two options.

• "normal" — Sets the low density parity-check (LDPC) codeword length to 64,800 bits
• "short" — Sets the LDPC codeword length to 16,200 bits

Tunable: Yes
Data Types: char | string

MODCOD — Modulation scheme and FEC rate
1 (default) | integer in the range [1, 28] | vector of integers in the range [1, 28]

 dvbs2WaveformGenerator

4-31

Modulation scheme and FEC rate for input transmission, specified as one of these options, as defined
in ETSI EN 302 307-1 Section 5.5.2.2 Table 12 [1].

• Integer in the range [1, 28] — Use this option with single-input and multi-input streams. If you set
the NumInputStreams property to a value greater than 1, each stream has the same modulation
scheme and coding rate.

• Vector of integers in the range [1, 28] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

Note MODCOD values 11, 17, 23, and 28 are not valid when you set the FECFrame property to
"short" (as specified in ETSI EN 302 307-1 Section 5.3 Table 5b [1]).

Tunable: Yes
Data Types: double

DFL — Data field length
15,928 (default) | integer in the range [1, (KBCH−80)] | vector of integers in the range [1, (KBCH−80)]

Data field (DF) length in bits, specified as one of these options. KBCH is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

• Integer in the range [1, (KBCH−80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

• Vector of integers in the range [1, (KBCH−80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes
Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the MODCOD property to a value in the range [18, 28], which indicates only
16APSK and 32APSK modulation schemes.
Data Types: char | string

HasPilots — Pilot block indication
0 or false (default) | 1 or true | vector of logical values

Pilot block indication, specified as a logical value of 0 (false), 1 (true), or a vector of logical
values. Set this value to 1 (true) to indicate pilots are inserted in the physical layer frame.

4 System Objects

4-32

If you set the NumInputStreams property to a value greater than 1, you can configure pilots for each
stream by specifying this property as a vector. The length of this vector must be equal to
NumInputStreams.

Tunable: Yes
Data Types: logical

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.25 | 0.2

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.25, or 0.2.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.
Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

• "short" — Indicates the length of ISSY as 2 bytes
• "long" — Indicates the length of ISSY as 3 bytes

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

 dvbs2WaveformGenerator

4-33

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).
Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.

Minimum number of packets required to create a DF, returned as one of these options.

• Integer in the range [1, 58,112] — This option applies with single-input streams only.
• Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams

only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.
Data Types: double

Usage

Syntax
txWaveform = s2waveGen(data)

Description

txWaveform = s2waveGen(data) generates a DVB-S2 time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
[] | binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of data type double, int8, or logical.

• Binary-valued column vector — Use this option with single-input streams.

To generate a dummy physical layer (PL) frame, specify data as an empty column vector.
• Cell array of binary-valued column vectors — Use this option with multi-input streams. Each

element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

4 System Objects

4-34

To generate a dummy frame for a particular input stream, specify the corresponding element of
the data cell array as an empty column vector.

Input data, either as a single-input or multi-input stream, must be input in one of these forms.

• Packetized stream — The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

• Continuous stream — The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell

Output Arguments

txWaveform — Generated time-domain DVB-S2 waveform
column vector

Generated time-domain DVB-S2 waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2WaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

 dvbs2WaveformGenerator

4-35

Examples

Generate DVB-S2 Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a single-input transport stream (TS) with a single physical layer (PL) frame per stream. Visualize
the waveform using constellation plots and signal spectrum.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2 System object. Specify the modulation scheme and FEC rate (MODCOD) and data
field length (DFL).

 s2WaveGen = dvbs2WaveformGenerator;
 s2WaveGen.MODCOD = 21; % 16APSK 5/6
 s2WaveGen.DFL = 39690;
 s2WaveGen.HasPilots = true; % Pilot insertion indication
 disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 1
 FECFrame: "normal"
 MODCOD: 21
 DFL: 39690
 ScalingMethod: "outer radius as 1"
 HasPilots: 1
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4

 Show all properties

Create a bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

4 System Objects

4-36

Generate a DVB-S2 time-domain waveform using the information bits, data.

txWaveform = s2WaveGen(data);

Visualize the constellation plot for the generated DVB-S2 time-domain waveform by creating a
comm.ConstellationDiagram System object.

sps = s2WaveGen.SamplesPerSymbol;
constel = comm.ConstellationDiagram('ColorFading',true, ...
 'ShowTrajectory',0, ...
 'SamplesPerSymbol',sps, ...
 'ShowReferenceConstellation',false, ...
 'XLimits',[-0.5 0.5], 'YLimits',[-0.5 0.5]);
plHeaderLen = 90*sps; % PL header length
constel(txWaveform(plHeaderLen+1:end));
release(constel);

 dvbs2WaveformGenerator

4-37

https://www.mathworks.com/help/comm/ref/comm.constellationdiagram-system-object.html

Display the frequency spectrum of the generated DVB-S2 time-domain waveform by creating a
dsp.SpectrumAnalyzer System object.

BW = 36e6; % Typical satellite channel bandwidth
Fsym = BW/(1+s2WaveGen.RolloffFactor);
Fsamp = Fsym*sps;
scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp);
scope(txWaveform)

4 System Objects

4-38

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

Generate DVB-S2 Waveform for Multi-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a multi-input generic stream (GS) with multiple physical layer (PL) frames per stream.

This example requires MAT-files with LDPC parity matrices. If they are not available on the path,
execute the following commands to download and unzip the MAT-files.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 3;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and FEC rate (MODCOD) and data field length (DFL).

 dvbs2WaveformGenerator

4-39

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [6 24]; % QPSK 2/3 and 32APSK 3/4
s2WaveGen.DFL = [42960 48328];
s2WaveGen.HasPilots = true;
s2WaveGen.SamplesPerSymbol = 10;
disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "GS"
 NumInputStreams: 2
 UPL: 0
 FECFrame: "normal"
 MODCOD: [6 24]
 DFL: [42960 48328]
 ScalingMethod: "outer radius as 1"
 HasPilots: 1
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

Create a bit vector of input information bits for each GS user packet.

data = cell(s2WaveGen.NumInputStreams,1);
 for i = 1:s2WaveGen.NumInputStreams
 data{i} = randi([0 1],s2WaveGen.DFL(i)*numFrames,1,'int8');
 end

Generate the DVB-S2 time-domain waveform with the input information bits.

txWaveform = s2WaveGen(data);

Generate DVB-S2 Dummy PL Frame

Generate a DVB-S2 dummy PL frame for a single-input transport stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Create a default DVB-S2 System object.

s2WaveGen = dvbs2WaveformGenerator;

Generate a PL dummy frame.

4 System Objects

4-40

data = zeros(0,1);

Generate a DVB-S2 waveform.

txWaveform = s2WaveGen(data);

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For all properties that support string and cell array input, code generation is only supported with
cell array input.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
dvbs2BitRecover

Objects
dvbs2xWaveformGenerator

Introduced in R2021a

 dvbs2WaveformGenerator

4-41

dvbs2xWaveformGenerator
Generate DVB-S2X waveform

Description
The dvbs2xWaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation extended (DVB-S2X) time-domain waveform consisting of a single or multiple
physical layer (PL) frames. The object implements the waveform generation aspects of ETSI EN 302
307-2 V1.1.1 (2015-11) [2].

To generate a DVB-S2X waveform:

1 Create the dvbs2xWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
s2xWaveGen = dvbs2xWaveformGenerator
s2xWaveGen = dvbs2xWaveformGenerator(Name,Value)

Description

s2xWaveGen = dvbs2xWaveformGenerator creates a default DVB-S2X waveform generator
System object.

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example,
dvbs2xWaveformGenerator('NumInputStreams',4,'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

4 System Objects

4-42

• "TS" — For transport stream format
• "GS" — For generic stream format

Data Types: char | string

HasTimeSlicing — Time slicing indicator
0 or false (default) | 1 or true

Time slicing indicator, specified as a logical value of 0 (false) or 1 (true). To indicate that time
slicing transmission format is used, set this value to 1 (true).

If you set this property to 1 (true), you can set the NumInputStreams property to a maximum value
of 8.
Data Types: logical

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

When you set the HasTImeSlicing property to true, NumInputStreams property can be specified
to a maximum value of 8.
Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

• Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

• Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.
Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.
Data Types: double

PLSDecimalCode — PL signalling code information
132 (default) | integer in the range [4, 249] | vector of integers in the range [4, 249]

 dvbs2xWaveformGenerator

4-43

PL signalling code information, in decimal format, specified as one of these options (as described in
ETSI EN 302 307-1 Section 5.5.2.2 [1] and ETSI EN 302 307-2 Section 5.5.2.2 Table 17a [2]).

• Integer in the range [4, 249] — Use this option with single-input and multi-input streams. If you
set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

• Vector of integers in the range [4, 249] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each stream has a modulation scheme
and coding rate equal to the corresponding element in this vector. The length of this vector must
be equal to NumInputStreams.

All odd integer values are considered to include pilots in PL frames.

Note Few PLSDecimalCode values are invalid in this specified value range. Invalid values include
{46, 47, 70, 71, 94, 95, 114, 128, 130, 176, 177, 188, 189, 192, 193, 196, and 197}.

To calculate the PLSDecimalCode property value for a DVB-S2X system configuration, use this
formula.

MODCOD*4 + (0 - for normal FECFrame/1 - for short FECFrame)*2 + (0 - if HasPilots property value
is false/1 - if HasPilots property value is true)

For example, if MODCOD = 18 (16APSK 2/3) with short FEC frame and pilots disabled, the value of
PLSDecimalCode calculated by using this formula is:

PLSDecimalCode = 18*4 + 1*2 + 0 = 74

Note For very low signal to noise ratio (VL-SNR) frames, you must set the PLSDecimalCode
property to either 129 or 131, which indicates the VL-SNR set 1 or 2, respectively.

VL-SNR frames must not be combined with regular frames.

Tunable: Yes
Data Types: double

CanonicalMODCODName — Canonical modulation scheme and code rate name
"QPSK 2/9" (default) | character vector | string scalar | cell array | string array

Canonical modulation scheme and code rate name for VL-SNR frame transmission, specified as one of
these options (as described in ETSI EN 302 307-2 Section 5.5.2.2 Table 18a [2]).

• Character vector or string scalar — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

• Cell array or string array — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding value in this array. The length of this array
must be equal to NumInputStreams.

Valid CanonicalMODCODName values include these options.

4 System Objects

4-44

• "QPSK 2/9", "BPSK 1/5", "BPSK 11/45", "BPSK-S 1/5", "BPSK-S 11/45", and "BPSK
1/3" — Applicable for VL-SNR set 1

• "BPSK 1/5", "BPSK 4/15", and "BPSK 1/3" — Applicable for VL-SNR set 2

Tunable: Yes

Dependencies

To enable this property, set the PLSDecimalCode property to either 129 (for VL-SNR set 1) or 131
(for VL-SNR set 2). This property applies for only VL-SNR frame transmissions.
Data Types: char | string

DFL — Data field length
18,448 (default) | integer in the range [1, (KBCH−80)] | vector of integers in the range [1, (KBCH−80)]

Data field (DF) length in bits, specified as one of these options. KBCH is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

• Integer in the range [1, (KBCH−80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

• Vector of integers in the range [1, (KBCH−80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes
Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the PLSDecimalCode property to a value corresponding to APSK
modulation, with the following as exception: {164, 165, 158, 159, 206, 207, 212, and 213}. The other
exceptions are QPSK and 8 PSK values: {4 to 69, inclusive; 129; 131; 132 to 137, inclusive; 142 to
147, inclusive; 216 to 235, inclusive}.
Data Types: char | string

PLScramblingIndex — PL scrambling sequence index
integer in the range [0, 7] | vector of integers in the range [0, 7]

PL scrambling sequence index, specified as one of these options (as described in ETSI EN 302 307-2
Section 5.5.4 Table 19e [2]).

• Integer in the range [0, 7] — Use this option with single-input and multi-input streams.

If you set the NumInputStreams property to a value greater than 1, each stream has the same
value of PL scrambling index.

 dvbs2xWaveformGenerator

4-45

• Vector of integers in the range [0, 7] — Use this option when you set the HasTimeSlicing
property to true for multi-input streams.

If you set the NumInputStreams property to a value greater than 1, the PL scrambling index
value of each stream must be equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

To generate the PL scrambling sequence, the actual index used is PLScramblingIndex*10949.
Data Types: double

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.05 | 0.1 | 0.15 | 0.2 | 0.25

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.05, 0.1, 0.15, 0.2, or
0.25.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.
Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

• "short" — Indicates the length of ISSY as 2 bytes
• "long" — Indicates the length of ISSY as 3 bytes

4 System Objects

4-46

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).
Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.

Minimum number of packets required to create a DF, returned as one of these options.

• Integer in the range [1, 58,112] — This option applies with single-input streams only.
• Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams

only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.
Data Types: double

Usage

Syntax
txWaveform = s2xWaveGen(data)

Description

txWaveform = s2xWaveGen(data) generates a DVB-S2X time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
[] | binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of the data type double, int8, or logical.

• Binary-valued column vector – Use this option with single-input stream.

To generate a dummy physical layer (PL) frame, specify data as an empty column vector.

 dvbs2xWaveformGenerator

4-47

• Cell array of binary-valued column vectors – Use this option with multi-input streams. Each
element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

To generate a dummy frame for a particular input stream, specify the corresponding element of
the data cell array as an empty column vector.

data, either single stream or multi-stream, can be input in one of these forms.

• Packetized stream – The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

• Continuous Stream – The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell

Output Arguments

txWaveform — Generated time-domain DVB-S2X waveform
column vector

Generated time-domain DVB-S2X waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2xWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

4 System Objects

4-48

clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate DVB-S2X Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input transport stream (TS) with a single physical layer (PL) frame per stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2X System object with pilot-aided PL.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.PLSDecimalCode = 133; % QPSK 13/45
 % All odd PLSDecimalCode values are pilot aided
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: false
 NumInputStreams: 1
 PLSDecimalCode: 133
 DFL: 18448
 PLScramblingIndex: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4

 Show all properties

Create the bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2xWaveGen.MinNumPackets*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

 dvbs2xWaveformGenerator

4-49

Generate a DVB-S2X time-domain waveform using the information bits, data.

txWaveform = s2xWaveGen(data);

Generate DVB-S2X Waveform Consisting of VL-SNR Frame

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input generic stream (GS) with multiple physical layer (PL) frames per stream.

The DVB-S2X waveform generated in this example consists of a very low signal to noise ratio (VL-
SNR) frame of set 2.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 2;

Create a DVB-S2X System object and specify its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.StreamFormat = "GS";
s2xWaveGen.PLSDecimalCode = 131; % VL-SNR set 2
s2xWaveGen.CanonicalMODCODName = "BPSK 1/3";
s2xWaveGen.DFL = 5080;
s2xWaveGen.SamplesPerSymbol = 6;
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "GS"
 HasTimeSlicing: false
 NumInputStreams: 1
 UPL: 0
 PLSDecimalCode: 131
 CanonicalMODCODName: "BPSK 1/3"
 DFL: 5080
 PLScramblingIndex: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 6

Create a bit vector of information bits for each stream.

data = randi([0 1],s2xWaveGen.DFL*numFrames,1,'int8');

4 System Objects

4-50

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]
 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

 dvbs2xWaveformGenerator

4-51

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

Generate DVB-S2X Dummy VL-SNR Frame

Generate a DVB-S2X dummy VL-SNR frame for a single-input transport stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end

4 System Objects

4-52

addpath('s2xLDPCParityMatrices');
end

Create a default DVB-S2X System object.

s2xWaveGen = dvbs2xWaveformGenerator;

Specify the PLS decimal code value to indicate VL-SNR frame, and set the DFL value.

s2xWaveGen.PLSDecimalCode = 129; % VL-SNR set 1
s2xWaveGen.DFL = 14128;

Generate a PL dummy frame.

data = zeros(0,1);

Generate a DVB-S2X waveform.

txWaveform = s2xWaveGen(data);

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

[2] ETSI Standard EN 302 307-2 V1.1.1(2015-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2:
DVB-S2 Extensions (DVB-S2X).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For all properties that support string and cell array input, code generation is only supported with
cell array input.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dvbs2WaveformGenerator

Functions
dvbs2BitRecover

Introduced in R2021a

 dvbs2xWaveformGenerator

4-53

etsiRicianChannel
Filter input signal through multipath ETSI frequency-flat Rician fading channel

Description
The etsiRicianChannel System object filters an input signal through a multipath European
Telecommunication Standards Institute (ETSI) frequency-flat Rician fading channel. For more
information on the etsiRicianChannel fading model, see “Channel Model Block Diagram” on page
4-60.

To filter an input signal using a multipath ETSI Rician fading channel:

1 Create the etsiRicianChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
chan = etsiRicianChannel
chan = etsiRicianChannel(Name,Value)

Description

chan = etsiRicianChannel creates a multipath ETSI frequency-flat Rician fading channel System
object. This object filters a real or complex input signal through the multipath channel to obtain the
channel-impaired signal.

chan = etsiRicianChannel(Name,Value) sets properties on page 4-54 using one or more
name-value pairs. Enclose each property name in quotes. For example,
etsiRicianChannel("SampleRate",2) sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.

4 System Objects

4-54

Data Types: double

KFactor — Rician K-factor
3 (default) | nonnegative nonzero scalar

Rician K-factor in dB, specified as a nonnegative nonzero scalar.

KFactor is the ratio of direct signal power to the total multipath power. For details, see “Channel
Model Block Diagram” on page 4-60.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift for channel path
0.001 (default) | nonnegative scalar

Maximum Doppler shift for the channel path, specified as a nonnegative scalar. Units are in hertz.

When you set this property to 0, the channel remains static for the entire input. You can use the
reset object function to generate a new channel realization. The MaximumDopplerShift property
value must be smaller than SampleRate/10.
Data Types: double

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.
Data Types: double

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of random number stream, specified as one of these options.

• "Global stream" — The current global random number stream is used for normally distributed
random number generation. In this case, the reset object function resets the channel filters only.

• "mt19937ar with seed" — The mt19937ar algorithm is used for normally distributed random
number generation. In this case, the reset object function resets the channel filters and
reinitializes the random number stream to the value of the seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer.
Dependencies

To enable this property, set the RandomStream property to "mt19937ar with seed".
Data Types: double

Visualization — Channel visualization
"Off" (default) | "Impulse response" | "Frequency response" | "Impulse and frequency
responses" | "Doppler spectrum"

 etsiRicianChannel

4-55

Channel visualization, specified as "Off", "Impulse response", "Frequency response",
"Impulse and frequency responses", or "Doppler spectrum".

When you set this property to "Doppler spectrum", the values plotted are in dB.
Data Types: char | string

Usage

Syntax
y = chan(x)
[y,pathgains] = chan(x)

Description

y = chan(x) filters input signal x through a multipath ETSI frequency-flat Rician fading channel
and returns the output signal in y.

[y,pathgains] = chan(x) returns the channel path gains of the underlying multipath ETSI
frequency-flat Rician fading process in pathgains.

Input Arguments

x — Input signal
NS-by-1 vector

Input signal, specified as an NS-by-1 vector, where NS is the number of samples.
Data Types: double
Complex Number Support: Yes

Output Arguments

y — Output signal
NS-by-1 vector

Output signal, returned as an NS-by-1 vector of complex values with the same data precision as the
input signal x on page 4-0 . NS is the number of samples.
Data Types: double
Complex Number Support: Yes

pathgains — Path gains
NS-by-1 vector

Path gains, returned as an NS-by-1 vector of complex values with the same data precision as the input
signal x on page 4-0 . NS is the number of samples.
Data Types: double
Complex Number Support: Yes

4 System Objects

4-56

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to etsiRicianChannel
info Characteristic information about object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Transmit Input Signal Through ETSI Rician Channel

Transmit an input signal through a European Telecommunication Standards Institute (ETSI) Rician
channel model.

Define the channel configuration using an etsiRicianChannel System object and specify its
properties.

chan = etsiRicianChannel;
chan.SampleRate = 2.9e6;
chan.KFactor = 4;
chan.MaximumDopplerShift = 30;
chan.NumSinusoids = 45;
disp(chan)

 etsiRicianChannel with properties:

 SampleRate: 2900000
 KFactor: 4
 MaximumDopplerShift: 30

 Use get to show all properties

Generate a QPSK-modulated input signal to pass through the channel.

txWaveform = pskmod(randi([0 3],chan.SampleRate,1),4);

Filter the signal through the Rician channel.

rxWaveform = chan(txWaveform);

 etsiRicianChannel

4-57

Verify ETSI Rician Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath European Telecommunication Standards Institute (ETSI) Rician fading
channel response by using two different methods for random number generation. The multipath ETSI
Rician fading channel System object includes two methods for random number generation. You can
use the current global stream or the mt19937ar algorithm with a specified seed. By interacting with
the global stream, the System object can produce the same outputs from the two methods.

Create etsiRicianChannel System object, and then specify its properties. Set the random number
generation method as the mt19937ar algorithm.

chan = etsiRicianChannel;
chan.SampleRate = 150000;
chan.KFactor = 2;
chan.MaximumDopplerShift = 10;
chan.RandomStream = "mt19937ar with seed";
chan.Seed = 80;

Modulate randomly generated data.

txWaveform = pskmod(randi([0 3],512,1),4);

Filter the modulated data by using the multipath Rician fading channel System object.

[ChanOut1,PathGains1] = chan(txWaveform);

Set the System object to use the global stream for random number generation.

release(chan);
chan.RandomStream = "Global stream";

Set the global stream to have the same seed that was specified when creating the multipath Rician
fading channel System object.

rng(80)

Filter the modulated data by using the multipath Rician fading channel System object again.

[ChanOut2,PathGains2] = chan(txWaveform);

Verify that the channel and path gain outputs are the same for each of the two random number
generation methods.

isequal(ChanOut1,ChanOut2)

ans = logical
 1

isequal(PathGains1,PathGains2)

ans = logical
 1

4 System Objects

4-58

Plot Doppler Spectrum for ETSI Rician Fading Channel

Create a multipath European Telecommunication Standards Institute (ETSI) Rician fading channel
and display its Doppler spectrum.

Create etsiRicianChannel System object, and then specify its properties.

chan = etsiRicianChannel;
chan.SampleRate = 3.6e6;
chan.KFactor = 10;
chan.MaximumDopplerShift = 50;
chan.Visualization = "Doppler Spectrum"; % Jake's Doppler spectrum

Generate random binary data for n consecutive frames and pass the data through the multipath
Rician fading channel.

n = 50;
for i = 1:n
 x = randi([0 1],3.6e6,1);
 y = chan(x); % Spectrum visualization is updated only when the buffer is filled
 % Required samples to fill the buffer is mentioned in the scope
end

 etsiRicianChannel

4-59

More About
Channel Model Block Diagram

The channel model block diagram provides an overview of the etsiRicianChannel System object,
as specified in ETSI TS 101 376-5-5 V1.3.1 (2005-02) [1].

• The complex input signal is multiplied by a fixed gain and then by a complex Rayleigh fading gain.
These actions form the multipath portion of the signal path. K is the Rician fade factor in dB.

• The multipath portion is then added to the direct signal component to form the Rician fading
signal. This action forms the line-of-sight (LOS) component of the signal path.

The coherent summation of many multipath components yield a classical Doppler spectrum for
Rayleigh fading process, which when added to the direct path signal, forms the Rician fading
signal.

• Noise samples can be subsequently added to the sum of the LOS component and multipath
components.

The Rician spectrum for linear Rician factor Kf is given by the following equation:

S(f) = 1

Kf ∗ π ∗ fd 1 − f
fd

2 + δ(f)

where:

• Kf is the Rician K-factor, “KFactor” on page 4-0 .

4 System Objects

4-60

• fd is the maximum Doppler shift for all multipath signals.
• f is in the range −fd < f < +fd.
• ẟ(f) is the contribution due to the LOS component.

Note The power of the complex output faded signal is (1+1/Kf).

References
[1] ETSI TS 101 376-5-5 V1.3.1 (2005-02). GEO-Mobile Radio Interface Specifications (Release 1);

Part 5: Radio interface physical layer specifications; Sub-part 5: Radio Transmission and
Reception; GMR-1 05.005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is available only when the Visualization property is "Off".
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.RicianChannel | comm.RayleighChannel | comm.AWGNChannel |
comm.RayTracingChannel

Functions
doppler

Introduced in R2021a

 etsiRicianChannel

4-61

gpsPCode
Generate P-code for GPS satellites

Description
The gpsPCode System object generates a precision code (P-code) for a Global Positioning System
(GPS) satellite, as defined in IS-GPS-200L Section 3.3.2.2 [1].

To generate a P-code for a GPS satellite:

1 Create the gpsPCode object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pgenerator = gpsPCode
pgenerator = gpsPCode(Name,Value)

Description

pgenerator = gpsPCode creates a default P-code generator System object.

pgenerator = gpsPCode(Name,Value) sets “Properties” on page 4-62 using one or more name-
value pairs. For example, 'PRNID',10 specifies a pseudo-random noise (PRN) ID of 10.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PRNID — GPS satellite PRN index
1 (default) | integer in the range [1, 210] | vector of integer elements in the range [1, 210]

GPS satellite PRN index, specified as one of these options.

• Integer in the range [1, 210] — Use this option to input a PRN index for a single satellite.
• Vector of integer elements in the range [1, 210] — Use this option to input PRN indices for

multiple satellites.

4 System Objects

4-62

For details on PRN ID values, see IS-GPS-200L Tables 3-Ia, 3-Ib, and 6-I [1].
Data Types: double | uint8

OutputCodeLength — Output code length
10230 (default) | positive integer

Output code length, specified as a positive integer. This length specifies the number of rows in the
output P-code.

The default value of 10230 corresponds to 1 millisecond of P-code, as the P-code chips are at 10.23
MHz.

Tunable: Yes
Data Types: double | uint64

InitialStateFormat — Format of the initial state
"seconds" (default) | "datetime" | "chips"

Format of the initial state, specified as "seconds", "datetime", or "chips".
Data Types: char | string

InitialTime — Initial time within one week
0 (default) | integer in the range [0, 604,800] | datetime object

Initial time within one week, specified as one of these options.

• Integer in the range [0, 604,800] — Use this option when you set the InitialStateFormat
property to "seconds". In this case, initial time specifies the seconds that have elapsed from the
beginning of the week.

• datetime object — Use this option when you set the InitialStateFormat property to
"datetime". In this case, initial time specifies the time elapsed from the beginning of the week to
the time specified by datetime object.

Note The P-code is one week long.

The default value of 0 assumes that you set the InitialStateFormat property to "seconds".

Dependencies

To enable this property, set the InitialStateFormat property to "seconds" or "datetime".
Data Types: double

InitialNumChipsElapsed — Initial number of elapsed P-code chips
0 (default) | integer in the range [0, 604,800x10.23e6]

Initial number of elapsed P-code chips, from the beginning of the week, specified as an integer in the
range [0, 604,800x10.23e6].

The maximum input value, 604,800x10.23e6, is the total number of chips elapsed in one week
(7×24×60×60×10.23e6).

 gpsPCode

4-63

Note 10.23e6 is the number of chips elapsed in one second.

Dependencies

To enable this property, set the InitialStateFormat property to "chips".
Data Types: double | uint64

Usage

Syntax
code = pgenerator()

Description

code = pgenerator()

Output Arguments

code — Generated binary-valued P-code
vector | matrix

Generated binary-valued P-code, specified as one of these options.

• Vector — The System object returns this option when you specify the PRNID property as a scalar.
• Matrix — The System object returns this option when you specify the PRNID property as a vector.

Each column of this matrix represents the generated P-code corresponding to the element in the
PRNID vector.

The number of rows is equal to the value of the OutputCodeLength property. The number of columns
is equal to the length of the PRNID property. Each element of the vector or matrix is of data type
int8.
Data Types: int8

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gpsPCode
info Characteristic information about object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object

4 System Objects

4-64

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate P-code When Initial Format Is Seconds

Create a precision code generator (P-code) System object™, and then set its properties.

pgen = gpsPCode;
pgen.PRNID = [10 50]; % 2 satellites
pgen.OutputCodeLength = 1024;
pgen.InitialTime = 1800; % Seconds (default)
disp(pgen)

 gpsPCode with properties:

 PRNID: [10 50]
 OutputCodeLength: 1024
 InitialStateFormat: "seconds"
 InitialTime: 1800

Generate the P-code.

code = pgen();

Generate P-code When Initial Format Is Chips

Create the P-code System object™ and set its properties.

pgen = gpsPCode;
pgen.PRNID = 45;
pgen.OutputCodeLength = 102400;

Set the initial state format as chips. Generate the P-code for the last 5,000 chips in one week.

pgen.InitialStateFormat = "chips";
% 604,800 is the total seconds in one week
% 10.23e6 is the number of P-code chips that elapsed in one second
pgen.InitialNumChipsElapsed = 604800*10.23e6 - 5000;
code = pgen();

Generate P-code When Initial Format Is datetime Object

Create a P-code System object™ and specify the PRN index and the output code length.

Set the format of the initial state as a datetime object. Generate the P-code for the current time.

pgen = gpsPCode;
pgen.PRNID = 25;
pgen.OutputCodeLength = 20460;

 gpsPCode

4-65

pgen.InitialStateFormat = "datetime";
pgen.InitialTime = datetime("now");
code = pgen();

Display the properties of the P-code generator.

disp(pgen)

 gpsPCode with properties:

 PRNID: 25
 OutputCodeLength: 20460
 InitialStateFormat: "datetime"
 InitialTime: 26-Feb-2022 14:54:27

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230
 InitialStateFormat: "seconds"
 InitialTime: 0

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.

pgen.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388600
 TotalSecondsElapsed: 0.820000000000000

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgen1 = gpsPCode;
pgen1.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgen1 =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230

4 System Objects

4-66

 InitialStateFormat: "seconds"
 InitialTime: 0.820000024437928

pgen1.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388600
 TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23e6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
 gpsPCode with properties:

 PRNID: 1
 OutputCodeLength: 10230
 InitialStateFormat: "seconds"
 InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
 TotalNumChipsElapsed: 8388601
 TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round() function.

Compare the output of each System object call.

code = pgen();
code1 = pgen1();
code2 = pgen2();
isequal(code, code1) % code and code1 are equal

ans = logical
 1

isequal(code1,code2) % code1 and code2 are unequal

ans = logical
 0

 gpsPCode

4-67

References
[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces." GPS

Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
gnssCACode

Objects
comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

Introduced in R2021b

4 System Objects

4-68

p681LMSChannel
Filter input signal through ITU-R P.681-11 LMS frequency-flat fading channel

Description
The p681LMSChannel System object filters a real or complex input signal through a frequency-flat
fading land mobile-satellite (LMS) communication channel, as defined in the ITU-R Recommendation
P.681-11 Section 6.2 [1].

To filter an input signal through a P.681-11 LMS time-varying channel:

1 Create the p681LMSChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
chan = p681LMSChannel
chan = p681LMSChannel(Name=Value)

Description

chan = p681LMSChannel creates an ITU-R P.681-11 LMS frequency-flat fading channel System
object.

The default System object has the environment set to an urban scenario, with carrier frequency of 2.2
GHz and an elevation angle of 45 degrees. This object models a single geostationary satellite.

chan = p681LMSChannel(Name=Value) sets properties on page 4-69 using one or more name-
value arguments. For example, SampleRate=20e3 sets the input signal sample rate to 20e3.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
7.68e6 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.

 p681LMSChannel

4-69

Data Types: double

InitialState — Initial state of channel
"Good" (default) | "Bad"

Initial state of the channel, specified as "Good" or "Bad".
Data Types: char | string

CarrierFrequency — Carrier frequency
2.2e9 (default) | nonnegative scalar

Carrier frequency in hertz, specified as a nonnegative scalar.
Data Types: double

ElevationAngle — Path elevation angle to geostationary satellite
45 (default) | scalar

Path elevation angle to a geostationary satellite in degrees, specified as a scalar. The nominal value is
in the range [0, 90].
Data Types: double

MobileSpeed — Speed of mobile terminal
0.8333 (default) | nonnegative scalar

Speed of mobile terminal in m/s, specified as a nonnegative scalar. The default value of 0.8333 m/s
translates to 3 km/h.

This property affects the Doppler spread applied to the multipath component and also the Doppler
shift applied to the direct path component.

Setting this property to 0, results in a static channel. In this case, the Doppler spread is not
applicable for the multipath component and the Doppler shift is also not applied in direct path
component of the channel.
Data Types: double

AzimuthOrientation — Azimuth orientation
0 (default) | scalar

Azimuth orientation in degrees, specified as a scalar. This value specifies the direction of movement
of the ground or mobile terminal. The nominal value is in the range [0, 360].

When you set this property to odd multiples of 90, the Doppler shift caused by the mobile movement
in the direct path component is nonexistent.
Data Types: double

Environment — Type of propagation environment
"Urban" (default) | "Suburban" | "RuralWooded" | "Village" | "Residential" | "Highway" |
"Rural" | "Train" | "Custom"

Type of propagation environment, specified as one of these values.

• "Urban"

4 System Objects

4-70

• "Suburban"
• "RuralWooded"
• "Village"
• "Residential"
• "Highway" — Applicable only when you set the value of CarrierFrequency property in the range

[10, 20] GHz
• "Rural" — Applicable only when you set the value of CarrierFrequency property in the range [10,

20] GHz
• "Train" — Applicable only when you set the value of CarrierFrequency property in the range [10,

20] GHz
• "Custom"

When you set this property to "Custom", configure the propagation environment using these
properties.

• StateDistribution
• MinStateDuration
• DirectPathDistribution
• MultipathPowerCoefficients
• StandardDeviationCoefficients
• DirectPathCorrelationDistance
• TransitionLengthCoefficients
• StateProbabilityRange

Data Types: char | string

StateDistribution — Parameters of state duration distribution
[3.0639 2.9108; 1.6980 1.2602] (default) | 2-by-2 matrix

Parameters of state duration distribution in dB, specified as a 2-by-2 matrix. For example, if you
specify the input as [muG, muB; sigmaG, sigmaB], then:

• muG and sigmaG represent the mean and standard deviation of good state duration, respectively.
• muB and sigmaB represent the mean and standard deviation of bad state duration, respectively.

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

MinStateDuration — Minimum duration of each state
[10 6] (default) | two-element row vector

Minimum duration of each state in meters, specified as a two-element row vector. The first element
corresponds to good state and the second element corresponds to bad state.

Dependencies

To enable this property, set the Environment property to "Custom".

 p681LMSChannel

4-71

Data Types: double

DirectPathDistribution — Parameters of direct path amplitude distribution
[-1.8225 -15.4844; 1.1317 3.3245] (default) | 2-by-2 matrix

Parameters of direct path amplitude distribution in dB, specified as a 2-by-2 matrix. For example, if
you specify the input as [muMaG, muMaB; sigmaMaG, sigmaMaB], then:

• muMaG and sigmaMaG represent the mean of the direct path amplitude (Ma) and the standard
deviation of Ma in good state, respectively.

• muMaB and sigmaMaB represent the mean and standard deviation of Ma in bad state,
respectively.

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

MultipathPowerCoefficients — Coefficients to compute multipath power
[-0.0481 0.9434; -14.7450 -1.7555] (default) | 2-by-2 matrix

Coefficients to compute the multipath power, specified as a 2-by-2 matrix. For example, if you specify
the input as [h1G, h1B; h2G, h2B], then:

• h1G and h2G represent the coefficients in good state.
• h1B and h2B represent the coefficients in bad state.

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

StandardDeviationCoefficients — Coefficients to compute standard deviation of direct
path amplitude
[-0.4643 -0.0798; 0.3334 2.8101] (default) | 2-by-2 matrix

Coefficients to compute standard deviation of direct path amplitude in all states, specified as a 2-by-2
matrix. For example, if you specify the input as [g1G, g1B; g2G, g2B], then:

• g1G and g2G represent the coefficients in good state.
• g1B and g2B represent the coefficients in bad state.

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

DirectPathCorrelationDistance — Direct path amplitude correlation distance
[1.7910 1.7910] (default) | two-element row vector

Direct path amplitude correlation distance (Lcorr) in meters, specified as a two-element row vector.
The first element corresponds to good state and the second element corresponds to bad state.

4 System Objects

4-72

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

TransitionLengthCoefficients — Coefficients to compute transition length
[0.0744; 2.1423] (default) | two-element column vector

Coefficients to compute the transition length (f1;f2), specified as a two-element column vector.

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

StateProbabilityRange — Minimum and maximum probability of each state
[0.05 0.1; 0.95 0.9] (default) | 2-by-2 matrix

Minimum and maximum probability of each state, specified as a 2-by-2 matrix. For example, if you
specify the input as [pminG, pminB; pmaxG, pmaxB], then:

• pminG and pmaxG represent the minimum and maximum values of state probability in good state.
• pminB and pmaxB represent the minimum and maximum values of state probability in bad state.

The minimum probability must be less than the maximum probability in a state. The value of each
element must be in range [0, 1].

Dependencies

To enable this property, set the Environment property to "Custom".
Data Types: double

ChannelFiltering — Channel filtering
true or 1 (default) | false or 0

Channel filtering, specified as one of these logical values.

• 1 (true) — The object accepts an input signal and produces a filtered output signal, in addition to
the channel path gains, sample times, and state series.

• 0 (false) — The object does not accept an input signal, produces no filtered output signal, and
outputs only channel path gains, sample times, and state series. You must specify the duration of
the fading process by using the NumSamples property, and the sampling rate by using the
SampleRate property.

Data Types: logical

NumSamples — Number of time samples
7680 (default) | nonnegative integer

Number of time samples used to set the duration of the fading process realization, specified as a
nonnegative integer.

Tunable: Yes

 p681LMSChannel

4-73

Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: double

OutputDataType — Data type of step method outputs
"double" (default) | "single"

Data type of step method outputs, specified as one of these values.

• "double"
• "single"

Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
"Filtered Gaussian noise" (default) | "Sum of sinusoids"

Channel model fading technique, specified as "Filtered Gaussian noise" or "Sum of
sinusoids".
Data Types: char | string

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to generate the Doppler fading samples, specified as a positive integer.

Dependencies

To enable this property, set the FadingTechnique property to "Sum of sinusoids".
Data Types: double | uint16

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of the random number stream, specified as "Global stream" or "mt19937ar with
seed".

• When you specify "Global stream", the object uses the current global random number stream
for normally distributed random number generation. In this case, the reset object function resets
only the filters.

• When you specify "mt19937ar with seed", the object uses the mt19937ar algorithm for
normally distributed random number generation. In this case, the reset object function resets
the filters and reinitializes the random number stream to the value of the Seed property.

Data Types: char | string

Seed — Initial seed
73 (default) | nonnegative integer

4 System Objects

4-74

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. When you call the reset object function, it reinitializes the mt19937ar random number
stream to the Seed value.

Dependencies

To enable this property, set the RandomStream property to "mt19937ar with seed".
Data Types: double | uint32

Visualization — Channel visualization
"Off" (default) | "Impulse response" | "Frequency response" | "Impulse and frequency
responses" | "Doppler spectrum"

Channel visualization, specified as one of these options.

• "Off"
• "Impulse response"
• "Frequency response"
• "Impulse and frequency responses"
• "Doppler spectrum"

When you set this property to enable the visualization, selected channel characteristics are animated
in separate figures, with each System object call.

For more information, see the “Channel Visualization” on page 4-82 section.
Data Types: char | string

Usage

Syntax
[pathgains,sampletimes,stateseries] = chan()
[y,pathgains,sampletimes,stateseries] = chan(x)

Description

[pathgains,sampletimes,stateseries] = chan() produces path gains, pathgains, sample
times, sampletimes, and state series, stateseries for an ITU-R P.681-11 LMS flat fading channel.

In this case, the System object acts as a source of path gains, sample times, and state series.

Specify the duration of the fading process by using the NumSamples property. Specify the datatype of
outputs using the OutputDataType property.

Note This syntax is applicable when you set the ChannelFiltering property to false.

[y,pathgains,sampletimes,stateseries] = chan(x) filters the input signal, x, through an
ITU-R P.681-11 LMS flat fading channel, and returns the output channel-impaired signal in y, in
addition to the outputs in the previous syntax.

 p681LMSChannel

4-75

Note This syntax is applicable when you set the ChannelFiltering property to true.

Input Arguments

x — Input signal
NS-by-1 vector

Input signal, specified as an NS-by-1 vector, where NS is the number of input samples.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Output signal
NS-by-1 vector

Output signal, returned as an NS-by-1 vector of complex values with the same data precision and
length as the input signal x. NS is the number of input samples.
Data Types: single | double
Complex Number Support: Yes

pathgains — Channel path gains of fading process
NS-by-1 vector

Channel path gains of fading process, returned as an NS-by-1 vector of complex values.

• When you set the ChannelFiltering property to true, pathgains is of the same data precision as
the input signal x, and NS is the number of input samples.

• When you set the ChannelFiltering property to false, pathgains is of the same data precision
as the OutputDataType property and NS is equal to the NumSamples property.

Data Types: single | double
Complex Number Support: Yes

sampletimes — Sample times of channel snapshots
NS-by-1 vector

Sample times of channel snapshots, returned as an NS-by-1 vector.

• When you set the ChannelFiltering property to true, sampletimes is of the same data precision
as the input signal x, and NS is the number of input samples.

• When you set the ChannelFiltering property to false, sampletimes is of the same data precision
as the OutputDataType property and NS is equal to the NumSamples property.

Data Types: single | double

stateseries — State series of channel
NS-by-1 vector

State series of the channel, returned as an NS-by-1 vector. Each value of this vector describes the
state in which channel is present for that channel snapshot. A value of 0 represents bad state. A value
of 1 represents good state. A value between 0 and 1 represents a state transition.

4 System Objects

4-76

• When you set the ChannelFiltering property to true, stateseries is of the same data precision
as the input signal x, and NS is the number of input samples.

• When you set the ChannelFiltering property to false, stateseries is of the same data precision
as the OutputDataType property and NS is equal to the NumSamples property.

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to p681LMSChannel
info Characteristic information about object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Transmit Signal Through P.681-11 LMS Channel

Create and Configure the Channel

Create an ITU-R P.681-11 LMS channel and configure it for a suburban scenario with a carrier
frequency of 20 GHz and an elevation angle of 50 degrees. Set the sample rate to 6000 kHz.

Specify the mobile terminal speed to 50 m/s, with an azimuth orientation of 20 degrees.

chan = p681LMSChannel;
chan.SampleRate = 6e6; % Hz
chan.CarrierFrequency = 20e9; % Hz
chan.ElevationAngle = 50; % degrees
chan.Environment = "Suburban";
chan.MobileSpeed = 50; % m/s
chan.AzimuthOrientation = 20; % degrees

Display the channel characteristics.

disp(chan)

 p681LMSChannel with properties:

 SampleRate: 6000000
 InitialState: "Good"

 p681LMSChannel

4-77

 CarrierFrequency: 2.0000e+10
 ElevationAngle: 50
 MobileSpeed: 50
 AzimuthOrientation: 20
 Environment: "Suburban"
 ChannelFiltering: true

 Use get to show all properties

Transmit Input Signal Through Channel

Set the random number generation seed as default.

rng("default")

Generate a random QPSK-modulated input signal.

numSamples = 6e6;
txWaveform = pskmod(randi([0 3],numSamples,1),4); % Modulation order = 4

Filter the signal through the channel.

[rxWaveform,pathGains,sampleTimes,stateSeries] = chan(txWaveform);

Visualize Space Series and State Series

Plot the space series as a function of time.

figure % Create figure window
subplot(2,1,1)
plot(sampleTimes,20*log10(abs(pathGains)))
title('Space Series')
xlabel('Time (in s)')
ylabel('Path Gain (in dB)')
grid on

Plot the state series as a function of time.

subplot(2,1,2)
plot(sampleTimes,stateSeries)
title('State Series')
xlabel('Time (in s)')
ylabel('State')
grid on

4 System Objects

4-78

Plot Doppler Spectrum for P.681-11 LMS Channel

Define the channel configuration using a p681LMSChannel System object and specify its properties.

Set the visualization as Doppler spectrum and disable the channel filtering.

chan = p681LMSChannel;
chan.SampleRate = 450000; % Hz
chan.CarrierFrequency = 11e9; % Hz
chan.ElevationAngle = 50; % degrees
chan.MobileSpeed = 20; % m/s
chan.Visualization = "Doppler spectrum";
chan.ChannelFiltering = false;
chan.NumSamples = 4e7;

Display the channel characteristics.

disp(chan)

 p681LMSChannel with properties:

 SampleRate: 450000
 InitialState: "Good"
 CarrierFrequency: 1.1000e+10
 ElevationAngle: 50
 MobileSpeed: 20

 p681LMSChannel

4-79

 AzimuthOrientation: 0
 Environment: "Urban"
 ChannelFiltering: false
 NumSamples: 40000000
 OutputDataType: "double"

 Use get to show all properties

Get the path gains, sample times, and state series of the channel. Also, observe the Doppler
spectrum.

[pathGains,sampleTimes,stateSeries] = chan();

Get P.681-11 LMS Channel Information

Get channel information from a p681LMSChannel System object by using the info object function.

Create an ITU-R P.681-11 LMS channel System object and specify its properties.

chan = p681LMSChannel;
chan.SampleRate = 10e3; % Hz
chan.MobileSpeed = 2; % m/s
chan.Environment = "RuralWooded";
disp(chan)

 p681LMSChannel with properties:

 SampleRate: 10000
 InitialState: "Good"

4 System Objects

4-80

 CarrierFrequency: 2.2000e+09
 ElevationAngle: 45
 MobileSpeed: 2
 AzimuthOrientation: 0
 Environment: "RuralWooded"
 ChannelFiltering: true

 Use get to show all properties

QPSK-modulate a random input signal, and then pass it through the channel.

numSamples = 2e4;
txWaveform = pskmod(randi([0 3],numSamples,1),4);
[rxWaveform,pathGains,sampleTimes,stateSeries] = chan(txWaveform);

Get the characteristic information about the P.681-11 LMS channel.

info(chan)

ans = struct with fields:
 PathDelays: 0
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples2 = 3e4;
txWaveform2 = pskmod(randi([0 3],numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.

info(chan)

ans = struct with fields:
 PathDelays: 0
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 50000

Algorithms
Doppler Phenomena

To calculate the Doppler spread and Doppler shift due to the movement of the mobile on Earth, refer
to these formulas.

• The maximum Doppler spread due to mobile movement is given by the following formula:

Fmob_max_spread = (vmob*fc) / c

where:

 p681LMSChannel

4-81

• vmob is the speed of the mobile terminal on Earth in m/s, specified as the MobileSpeed property.
• fc is the carrier frequency in Hz, specified by the CarrierFrequency property.
• c is the speed of light in free space in m/s, specified as physconst('lightspeed').

• The Doppler shift due to mobile movement is given by the following formula:

fdmob = Fmob_max_spread * cosd(θ) * cosd(φ)

where:

• Fmob_max_spread is the maximum Doppler spread due to mobile movement.
• θ is the path elevation angle to the satellite in degrees, specified by the ElevationAngle

property.
• φ is the azimuth orientation in degrees, specified by the AzimuthOrientation property.

The maximum Doppler shift caused by the movement of the mobile must be less than one-tenth of
Sample Rate property.

Channel Visualization

The p681LMSChannel System object enables visualization of the channel impulse response,
frequency response, and Doppler spectrum.

• The Doppler spectrum plot displays the empirically determined spectrum from the path gains of
the channel. The Doppler spectrum values are in dB.

When there is no mobile movement, the channel is static channel. The empirical data is displayed
as a line for the case of nonstatic channels and as a point for static channels. Before the empirical
plot is updated, the internal buffer must be completely filled with the required number of channel
samples. The empirical plot is the running mean of the spectrum that is calculated from each full
buffer. For nonstatic channels, the number of input samples that is needed before the next update
is displayed in the status bar located at the bottom of plot. The number of samples that is needed
is a function of the sample rate and the maximum Doppler shift depending on mobile movement.
For static channels, the text "Reset fading channel for next update" is displayed.

4 System Objects

4-82

Nonstatic Channel

 p681LMSChannel

4-83

Static Channel
• For channel impulse and frequency visualizations, see the “Channel Visualization” section of the

comm.RayleighChannel System object.

References
[1] ITU-R Recommendation P.681-11 (08/2019). “Propagation data required for the design systems in

the land mobile-satellite service.” P Series; Radiowave propagation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is available only when the Visualization property is "Off".
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
etsiRicianChannel | comm.RayleighChannel

4 System Objects

4-84

Topics
“Simulate and Visualize a Land Mobile-Satellite Channel”

Introduced in R2022a

 p681LMSChannel

4-85

	Apps
	Satellite Link Budget Analyzer

	Functions
	bocmod
	ccsdsRSEncode
	ccsdsRSDecode
	dvbs2BitRecover
	p618PropagationLosses
	p618SiteDiversityOutage
	ccsdsTCWaveform
	ccsdsTCIdealReceiver
	info
	flushFilter
	satellite
	conicalSensor
	satelliteScenarioViewer
	play
	pointAt
	camroll
	campitch
	campos
	camheading
	camheight
	camtarget
	hideAll
	showAll
	accessPercentage
	linkPercentage
	linkStatus
	linkIntervals
	aer
	accessIntervals
	orbitalElements
	accessStatus
	states
	gimbalAngles
	show
	hide
	ebno
	access
	groundStation
	transmitter
	receiver
	gimbal
	fieldOfView
	link
	gaussianAntenna
	groundTrack
	gnssCACode
	dvbrcs2TurboEncode
	dvbrcs2TurboDecode
	pattern
	dvbrcs2BitRecover
	advance
	restart

	Objects
	ccsdsTCConfig
	p618SiteDiversityConfig
	p618Config
	satelliteScenario
	skyplot
	SkyPlotChart
	Satellite
	GroundStation
	Access
	ConicalSensor
	Transmitter
	Receiver
	Gimbal
	FieldOfView
	Link
	GroundTrack
	Pattern
	dvbrcs2RecoveryConfig

	System Objects
	ccsdsTMWaveformGenerator
	dvbrcs2WaveformGenerator
	dvbs2WaveformGenerator
	dvbs2xWaveformGenerator
	etsiRicianChannel
	gpsPCode
	p681LMSChannel

